How Good is Post-Hoc Watermarking With Language Model Rephrasing?

Pierre Fernandez*'!, Tom Sander*', Hady Elsahar!, Hongyan Chang', Tomas Soucek', Valeriu
Lacatusu!, Tuan Tran', Sylvestre-Alvise Rebuffi', Alexandre Mourachko!

'FAIR, Meta Superintelligence Labs

*Core & Equal contributors.

Generation-time text watermarking embeds statistical signals into text for traceability of Al-
generated content. We explore post-hoc watermarking where an LLM rewrites existing text while
applying generation-time watermarking, to protect copyrighted documents, or detect their use
in training or RAG via watermark radioactivity. Unlike generation-time approaches, which are
constrained by how LLMs are served, this setting offers additional degrees of freedom for both
generation and detection. We investigate how allocating compute (through larger rephrasing
models, beam search, multi-candidate generation, or entropy filtering at detection) affects
the quality-detectability trade-off. Our strategies achieve strong detectability and semantic
fidelity on open-ended text such as books. Among our findings, the simple Gumbel-max scheme
surprisingly outperforms more recent alternatives under nucleus sampling, and most methods
benefit significantly from beam search. However, most approaches struggle when watermarking
verifiable text such as code, where we counterintuitively find that smaller models outperform
larger ones. This study reveals both the potential and limitations of post-hoc watermarking,
laying groundwork for practical applications and future research.
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1 Introduction

Post-hoc text watermarking inserts an algorithmically-detectable signal into an existing text while
remaining imperceptible to readers. It serves several goals, such as copyright protection or traitor
tracing. Early approaches relied on hand-crafted modifications: synonym substitutions (Topkara
et al., 2006¢; Shirali-Shahreza and Shirali-Shahreza, 2008), grammatical transformations (Topkara
et al., 2006b,a) or morphosyntactic alterations (Meral et al., 2009). Recent methods based on deep
neural networks follow a post-hoc paradigm where the input is the original text and the output is the
watermarked text, using one watermark embedder and one watermark extractor (Abdelnabi and Fritz,
2021), similarly to state-of-the-art post-hoc watermarking approaches for images, audio, and video.
However, these methods are not effective, suffering from low capacity or unreliable detection, because
they are highly constrained or easily broken by reversing the edits or synonyms.

With the emergence of large language models (LLMs), their popularization through ChatGPT (OpenAl,
2022), and growing concerns about potential risks (Crothers et al., 2022; Weidinger et al., 2022),
generation-time text watermarking algorithms have been introduced to help detect Al-generated
text (Aaronson and Kirchner, 2023; Kirchenbauer et al., 2023a). These algorithms have been deployed
at scale, for instance, in Google’s Gemini with SynthID (Dathathri et al., 2024). Most LLM watermarks
alter the next token selection, for example, by promoting a specific set of tokens depending on previous
tokens and a secret key. Detection of the watermark in a text is then performed through a theoretically
grounded statistical test that provides rigorous guarantees over the false positive rates. In addition,
these methods achieve high watermark power while adding minimal latency by leveraging the entropy
of the LLM to embed the signal. However, in contrast with previous approaches, these methods require
control at generation time and therefore cannot be applied to existing text.

A natural idea to extend these methods to post-hoc watermarking is to employ a paraphrasing LLM to
re-generate the text, allowing the watermark to be injected at inference time without further model
training. This approach has been explored in data protection literature (Jovanovi¢ et al., 2025; Sander
et al., 2025; Rastogi et al., 2025; Zhang et al., 2025; Lau et al., 2024). For example, “watermark
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Figure 1 Post-hoc text watermarking through watermarked LLM rephrasing. We do empirical evaluations and analyze
detection power, semantic fidelity, and correctness according to different design choices such as watermark
scheme and available compute (through the paraphrasing model and the decoding strategy).

radioactivity” exploits the fact that watermark signals leave detectable traces when watermarked text is
used by another model, enabling active training and context membership inference (Sander et al., 2025;
Jovanovié et al., 2025). However, to our knowledge, there is no thorough evaluation of how post-hoc
watermarking through LLM paraphrasing performs across different data domains, such as prose versus
verifiable text like code. Moreover, unlike generation-time watermarking, where watermark embedding
should not delay the generation, post-hoc watermarking allows trading additional computation for a
better quality-detectability trade-off. This opens up several axes to explore: model size, watermarking
method, decoding strategy (and even generating multiple candidates), as well as detection strategy.

To address this gap, in this paper, we provide a comprehensive evaluation of post-hoc watermarking.
We find that current state-of-the-art LLM watermarking schemes applied in a post-hoc setting perform
well on open-ended text, such as Wikipedia articles and books, achieving high detection power while
preserving fidelity. However, these methods are less effective on verifiable text like code, where the
requirement to preserve correctness severely constrains paraphrasing freedom. Regarding design choices,
we find that larger models better preserve semantics, while smaller models are necessary to effectively
hide strong watermarks. Furthermore, the simplest Gumbel-max approach (Aaronson and Kirchner,
2023) dominates the Pareto frontier when classical random sampling is used. For other watermarking
methods, we find that beam search decoding significantly improves the quality-detectability trade-off.

In short, our main contributions are:

o A comprehensive evaluation: We conduct the first large-scale study of post-hoc watermarking through
LLM rephrasing (Figure 1) across diverse domains, demonstrating that while current methods are
effective for open-ended text, they struggle with verifiable formats like code.

o An analysis of design strategies: We isolate the impact of model size, decoding, and watermarking
schemes. For instance, we identify Gumbel-max as the robust Pareto-optimal choice (Figure 2).

e An open-source research framework: We release an easily modifiable codebase to facilitate research
for post-hoc watermarking techniques.

2 Related work

2.1 Post-Hoc Text Watermarking

Early text watermarking altered text characteristics like characters or spacing (Brassil et al., 1995).
Other methods modify grammatical or syntactical structures via pre-established rules (Topkara et al.,
2005), including synonym substitution (Topkara et al., 2006¢) and word reordering through passivization
or topicalization (Topkara et al., 2006b,a; Meral et al., 2009). Text steganography follows similar
principles (Winstein, 1998; Chapman et al., 2001; Bolshakov, 2004; Shirali-Shahreza and Shirali-
Shahreza, 2008; Chang and Clark, 2014; Xiang et al., 2017). These edit-based systems typically exhibit
low robustness and payload, e.g., 1-2 bits per sentence (Wilson and Ker, 2016). Deep learning methods
have since been used for this task, for instance, with masked language models for steganography (Ueoka
et al., 2021), infilling models (Yoo et al., 2023a), neural lexical substitution (Qiang et al., 2023), or
encoder-decoder architectures (Abdelnabi and Fritz, 2021; Zhang et al., 2024; Xu et al., 2024).



2.2 Generation-Time Watermarking With Large Language Models

The first watermarks for machine-generated text date back to a method presumably used in Google
Translate to filter automated translations from future training data (Venugopal et al., 2011). For LLM-
generated text, two concurrent approaches appeared shortly after the release of ChatGPT. Kirchenbauer
et al. (2023a) bias a subset of the vocabulary, while Aaronson and Kirchner (2023) alter the sampling
via the Gumbel trick. Both use pseudorandom seeds generated from a secret key and preceding tokens,
enabling lightweight detection through statistical tests without access to the model.

Subsequent work explores improved tests and multi-bit watermarking (Fernandez et al., 2023; Yoo et al.,
2023b, 2024; Qu et al., 2024), position-dependent seeds (Christ et al., 2023; Kuditipudi et al., 2023),
low-entropy optimizations (Lee et al., 2023; Christ et al., 2023; Huang et al., 2023), and semantic water-
marks for better robustness (Liu et al., 2023; Liu and Bu, 2024; Fu et al., 2024; Hou et al., 2023, 2024).
DiPMark (Wu et al., 2023) provides distortion-free Green-Red watermarks, and MorphMark (Wang
et al., 2025) adaptively adjusts watermark strength based on the green token probability mass. Water-
Max (Giboulot and Furon, 2024) generates several chunks of tokens from the original LLM distribution
and selects outputs with high watermark scores, which ensures that the original LLM distribution is
preserved. SynthID-Text (Dathathri et al., 2024) deploys tournament-based sampling in Google Gemini.
Toolkits have also been introduced to benchmark these methods (Piet et al., 2023; Pan et al., 2024).

We provide a comprehensive description of the schemes evaluated in this work in subsection A.2.

2.3 Post-Hoc LLM Watermarks for Data Protection

Recent works apply LLM watermarks to training or evaluation data via paraphrasing, similar to
what we study in this work. They exploit watermark radioactivity (Sander et al., 2024), i.e., the
detectable traces left when watermarked text is used for training. Applications include detection of
texts used in retrieval-augmented generation (RAG) (Jovanovic¢ et al., 2025), benchmark contamination
detection (Sander et al., 2025), and training data copyright (Zhang et al., 2025). Only Waterfall (Lau
et al., 2024) evaluates post-hoc watermarking through LLM paraphrasing, focusing on code (MBPP)
and natural text (C4 and arXiv) for provenance detection.

These works demonstrate the utility of such methods for data protection, but do not evaluate it as a
general watermarking method, nor do they characterize failure modes across text types and settings.

3 Method

Post-hoc watermarking via paraphrasing. The key idea is to paraphrase the input text using an LLM

while applying watermarking during generation, as depicted in Figure 1. The pipeline is as follows:
1. Split input text into chunks (sentences or paragraphs).

2. For each chunk, prompt an LLM to produce a paraphrase, given specific instructions (e.g., preserve
named entities, minimal lexical change) and some previous context.

3. During decoding, sample the next token with watermarking: for instance, favor tokens in a
“greenlist” according to a strength parameter or any of the methods described in subsection 2.2.

4. Aggregate watermark scores across chunks and compute the detector statistic.

3.1 LLM Watermarking

Next token generation. At each decoding step, the LLM computes logits £ € RVl over the vocabulary
V conditioned on the preceding context. These logits are converted into a probability distribution
p = softmax(£/T') via temperature scaling by 7.

Watermarked sampling. Watermarking modifies the decoding process rather than sampling directly
from p. This is done depending on a window w of the k preceding tokens and a secret key s. A
pseudorandom function PRF(-) combines w, s, and a candidate token v to produce a value used for
biasing the sampling of token v. For instance, in the green-red method (Kirchenbauer et al., 2023a), we



compute PRF(w, s,v) for all tokens v € V to partition the vocabulary into a “greenlist” and a “redlist,”
then bias the logits by adding § to green tokens. Other schemes alter the sampling mechanism directly
(e.g., with the Gumbel-max trick (Aaronson and Kirchner, 2023)). This embeds a statistical signal
into the generated text that is imperceptible to readers but detectable by the detector. We provide a
comprehensive description of the watermarking schemes evaluated in this work in subsection A.2.

Detection and statistical test. Detection recomputes the pseudorandom function for each group of
tokens and aggregates the results into a test statistic. Under the null hypothesis Hy “not watermarked
with this specific scheme”, the statistic should follow a known distribution, yielding a p-value for
the probability of observing such a score or a more extreme score by chance. Under the alternative
hypothesis H; “watermarked text with this specific scheme”, the statistic should deviate significantly
enough and lead to low p-values. We flag text as watermarked if the p-value is below a detection
threshold «, which controls the false positive rate (FPR).

For instance, if K (the test statistic here) is the observed number of green tokens out of N scored tokens
and this statistic follows under Ho a Binomial distribution with parameters N and 7 (expected green
ratio, typically 0.5), then p-value = P (X > K | X ~ Binomial(N,v)). As an example, if we observe
K = 65 green tokens out of N = 100 with v = 0.5, the p-value is approximately 10~3; to flag this text
as watermarked, we would need a FPR of o > 1073,

An important practical consideration is deduplication: because the pseudorandom function depends on
the preceding k tokens, repeated n-grams generate identical hashes. This violates the statistical inde-
pendence of the scores used when assuming the distribution of the test statistic under Hy. Aggregating
scores only over unique watermark windows within the text (Kirchenbauer et al., 2023a; Fernandez
et al., 2023) is a good way to mitigate this issue and to ensure valid p-values. But deduplication alone
may not guarantee valid statistical tests because natural language inherently favors certain n-grams
over others. This bias can cause p-values to be artificially low or high even for unwatermarked text.
To address this, we ensure that under H, p-values are approximately uniform on U(0,1). In practice,
we test many candidate secret keys and select one for which the empirical p-value distribution on
unwatermarked text is close to uniform. We provide more details in subsection A.1.

3.2 Compute-Driven Flexibility

Operating in a post-hoc setting offers more flexibility than in-generation watermarks, which must
comply with live-serving constraints such as latency, memory, and decoding speed (Dathathri et al.,
2024). Here, we can use large or small models, run higher temperatures or beam search instead of
simple sampling, and even employ multi-candidate selection like WaterMax (Giboulot and Furon, 2024),
as a function of available compute and quality targets. We detail the specific higher-compute decoding
(and detecting) methods we test below.

Beam search for watermarking. We use a beam search approach to improve the quality-detectability
trade-off. Specifically, we maintain B candidate sequences and expand each beam with V' candidates
sampled from the watermarked probability distribution pwm(- | £<¢), which is derived by applying the
watermarking scheme (e.g., Maryland, SynthID, DIPMark, MorphMark) to the base model’s logits.
To select the top-B beams at each step, we score candidates using log-probability under a reference
distribution. We explore two scoring variants: unbiased scoring uses the original model probabilities
Porig (- | T<:) to favor sequences with lower perplexity relative to the base model, prioritizing text
quality; biased scoring uses the watermarked probabilities pwm (- | ©<¢) to favor sequences that are
most probable under the watermarked distribution, potentially yielding stronger watermark signals.
We note that the latter was also explored for generation-time watermarking in (Kirchenbauer et al.,
2023b). For candidate generation, we consider both deterministic beam search (selecting top-V tokens
by pwm) and stochastic beam search (sampling V tokens from pym).

Multi-candidate selection with WaterMax (Giboulot and Furon, 2024). Rephrasing is done chunk by
chunk, with chunks of L tokens. For each chunk, we generate m candidates {g](l), . ,g<m>} without
applying any logit bias. We then select the candidate that naturally maximizes the watermark score:
y* = argmax, Scoreym (y). This method is “distortion-free” regarding the sampling distribution but is
typically infeasible in standard API usage due to cost (generating L times more tokens per chunk).



Entropy-aware detection. At detection time, we compute the entropy H; of the model’s predicted
distribution at each token position ¢ in the watermarked text H; = — " ., p:(v) log ps(v) where p;(v)
is the model probability for token v given the prefix up to ¢ — 1 in the watermarked text. We then apply
an entropy filter: a token is included in the watermark score only if H; exceeds a chosen threshold 7,
similar to what is done in Lee et al. (2023) for code. This focuses detection on high-entropy positions,
where watermarking is more effective, and ignores low-entropy tokens. All entropy computations are
performed on the watermarked text, as the original text is not available at detection time. As a result,
these entropy values differ from those at generation-time, when the model was conditioned.

4 Experiments

We conduct a comprehensive evaluation of post-hoc watermarking to assess: (1) detection power
(the ability to reliably identify watermarked text, measured through p-values) and (2) fidelity (the
preservation of meaning and quality through paraphrasing). In subsection 4.1, we detail the experimental
setup, including datasets, models, watermarking schemes, decoding strategies, and evaluation metrics.
In subsection 4.2, we compare watermarking methods on the quality-detectability Pareto frontier,
finding that Gumbel-max dominates under standard sampling. In subsection 4.3, we show that larger
models preserve semantics better, but small/mid-size models offer sweet spots, with stronger watermark
signals due to higher entropy. In subsection 4.4, we demonstrate that beam search improves the Pareto
frontier for all applicable methods. In subsection 4.5, we evaluate entropy-aware detection and find
only modest gains. In subsection 4.6, we investigate post-hoc watermarking on code, revealing that
correctness constraints limit detectability. In subsection 4.7, we evaluate cross-lingual robustness and,
in subsection 4.8, the impact of chunking on long documents.

4.1 Experimental Setup
Datasets. We evaluate on three diverse corpora to capture different text characteristics and use cases:

e Books: Passages in English from the Gutenberg dataset (Project Gutenberg, 2025), containing
books. These represent longer-form, literary texts with complex sentence structures.

o Wikipedia: The beginning of randomly sampled Wikipedia articles. These represent factual,
encyclopedic texts with a formal writing style and different languages.

e Code: Programming problems from the HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021) benchmarks, consisting of Python functions with accompanying unit tests.

Paraphrasing models and prompts. We experiment with several dense open-weight instruct LMs as
paraphrasers, spanning different families and sizes to study the impact of model scale on paraphrase
quality and watermark preservation. Specifically, we use the instruct version of LLaMA-3 (Dubey et al.,
2024) (1B, 3B, 8B, 70B), Gemma-3 (DeepMind, 2025) (1B, 4B, 12B, 27B), Qwen-2.5 (Team, 2024)
(0.5B, 1.5B, 3B, 7B, 14B, 32B), and SmolLM-2 (Allal et al., 2025) (135M, 360M, 1.7B).

To ensure the model outputs the watermarked text directly and without any comments, we use a
structured system prompt and prefill the assistant’s response with a prefix (e.g., “Rephrased text:”).
An example prompt used is:

“You are a text rephrasing assistant. You must rephrase the given text while strictly preserving its original

meaning, style, and structure. You must output only the rephrased text, with no explanations or commentary.”

Chunking strategy. Large documents may be difficult to rephrase in a single pass, or may even exceed
the model’s context window, so we split texts into chunks. We compare two modes: full-context,
which processes the entire document at once, and context-aware chunking, which processes each chunk
separately while prepending one or two previously rephrased chunks as context to preserve coherence.

Watermarking schemes. We evaluate multiple watermarking methods (detailed in subsection A.2), all
with window size 2, varying their hyperparameters to explore their detection-quality trade-offs.

e Green-Red List (Kirchenbauer et al., 2025b): We vary the bias § € {1.0,2.0,4.0}.



e DiPMark (Wu et al., 2023): We vary the reweighting parameter « € {0.2,0.3,0.4}.
e MorphMark (Wang et al., 2025): We fix k = 10 and vary po € {0,0.05,0.1,0.2}.

o SynthID-Text (Dathathri et al., 2024): We vary the number of tournaments k € {10,20,30}. We
also compute the p-values from weighted and non-weighted scores as described in subsection A.2.

e Gumbel-max (Aaronson and Kirchner, 2023): Fixed by temperature and top-p.

Choice of private key. We address the private key issue described in section 3 by testing 50 candidate
keys. For each combination of tokenizer, watermarking method (and depth for SynthID), we evaluate
the keys on non-watermarked texts to estimate the p-value distribution under Hy. We then select
the key that minimizes the deviation from U(0, 1), as measured by the Kolmogorov—Smirnov statistic.
Next, we verify that the theoretical FPRs for these keys match the empirical FPRs on 1.5M Wikipedia
documents (they contain up to 100k tokens, with an average of 715 tokens). This ensures that the
subsequent results under H; reflect the intrinsic performance of each scheme rather than artifacts of a
particular key choice. Further details are provided in Table 6.

Entropy aware detection. For all methods, we evaluate entropy-aware detection by computing per-token
entropy with the same model as used for rephrasing. At detection, we only score tokens with entropy
> 7, with 7 € {0,0.2,0.4,0.6,...,1.8,2.0}. We note that we only pass the watermarked text to compute
the per-token entropy without the original text as context.

Decoding strategies. We explore different decoding approaches:

e Nucleus sampling (Holtzman et al., 2019). We vary temperature T' € {0.7,1.0,1.2} and top-p €
{0.9,0.95,0.99}. Higher temperature or top-p should increase entropy at the cost of faithfulness.

e Beam search (Sutskever et al., 201/), as detailed in section 3. We test beam widths B € {3,5,10}
with the same number of candidates per beam. We experiment with selection criteria based on
either the non-watermarked likelihood or the watermarked model’s likelihood, and use stochastic
(temperature 1 and top-p 0.95) or deterministic selection within beams.

o WaterMax (Giboulot and Furon, 2024), as detailed in section 3. We generate L € {4,8,16}
non-watermarked candidate tokens per draft m € {4,8} and select the one with the highest
number of green tokens, and repeat.

Evaluation metrics. We employ the following metrics to evaluate performance:

e Detection: We compute the p-value of the corresponding detection test, which can be read as the
probability that a watermark score at least as high would happen if the text were not watermarked.

e Quality: We evaluate rephrasing quality along three axes. Semantic similarity: We use the
BERTScore (Zhang et al., 2020) to measure meaning preservation between original and rephrased
texts. Naturalness: We compute the average cross entropy of the rephrased text using Mistral-7B-
v0.3 (Jiang et al., 2023), conditioned on the prefix “ This is a rephrased version of [ORIGINAL
TEXTJ?, capturing if the output is fluent and plausible. Length ratio: We report the character-
level length ratio between rephrased and original text, which should remain close to 1.

e Functional Correctness (Code): For code datasets, we measure the percentage of paraphrased
functions that pass their unit tests (Pass@1).

In Sections 4.2, 4.3, 4.5, 4.4 and 4.8, each reported value corresponds to the median over 100 passages
of approximately 800 characters (~200 tokens) sampled from Charles Dickens’ novels in the Project
Gutenberg dataset (Project Gutenberg, 2025). We keep only rephrasings where the output length
remains comparable to the original (length ratio € [0.75,1.25]), and report results only for settings
where at least 70% of passages satisfy this constraint.

As detailed in Appendix C, output length distributions are remarkably consistent across watermarking
schemes and are primarily determined by the base model rather than the watermarking method. While
output length is arguably a quality signal in itself, we invite the reader to examine these distributions
in the appendix, allowing the main analysis to focus on semantic fidelity and detection power within
valid generation bounds.



Table 1 Qualitative comparison on literary text. A sample from A Christmas Carol by Charles Dickens, rephrased
using Llama-3.2-3B-Instruct with the Gumbel-max scheme, T'= 0.7 and top-p = 0.95. The output maintains
the original tone and structure while achieving high semantic similarity and good watermark detectability.

Original Text

Watermarked Rephrasing

“You don’t believe in me,” observed the Ghost.
“I don’t,” said Scrooge.

“What evidence would you have of my reality beyond
that of your senses?”

“I don’t know,” said Scrooge.
“Why do you doubt your senses?”

“Because,” said Scrooge, “a little thing affects them. A
slight disorder of the stomach makes them cheats.
You may be an undigested bit of beef, a blot of
mustard, a crumb of cheese, a fragment of an
underdone potato. There’s more of gravy than of
grave about you, whatever you are!”

Scrooge was not much in the habit of cracking jokes,
nor did he feel, in his heart, by any means waggish
then. The truth is, that he tried to be smart, as a
means of distracting his own attention, and keeping
down his terror; for the spectre’s voice disturbed the
very marrow in his bones. To sit, staring at those
fixed glazed eyes, in silence for a moment, would play,
Scrooge felt, the very deuce with him.

“You’re not convinced of my existence,” said the
Ghost.

“I am not,” replied Ebenezer Scrooge.

“What evidence do you have to confirm my reality
beyond the limits of your perceptions?”

“I don’t know,” Scrooge replied.
“Why do you question the reliability of your senses?”

“Because,” Scrooge said, “a minor aberration can
significantly impact them. A slight irregularity in
digestion can cause them to be misled. You may be
an undigested morsel of meat, a splash of mustard, a
fragment of a partially cooked potato. There’s more
of gristle than of flesh about you, regardless of what
you are!”

Scrooge was not accustomed to indulging in humor,
nor did he feel that he was particularly witty at any
point. The truth was, that he tried to appear
intelligent, as a means of diverting his own attention
and suppressing his fear; as a way to distract himself
from the unsettling presence of the spectre. To sit,
staring at those fixed, unblinking eyes, in silence for a
moment, would play, Scrooge felt, a cruel and
unforgiving reminder of the truth.
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4.2 Quality-Detection Trade-Off

We first evaluate the fundamental trade-off between rephrasing quality and detection strength in Figure 2,
using Llama-3.2-3B-Instruct with random sampling. Each point corresponds to a distinct parameter
configuration as described in subsection 4.1. Optimal methods occupy the top-right region of the plot,
combining high text quality with strong detectability. The Gumbel-max method appears to dominate
this Pareto frontier, followed by MorphMark and SynthID.

We also present a qualitative example in Table 1, where we rephrase text using Llama-3.2-3B-Instruct
with the Gumbel-max watermark with 7'= 0.7 and p = 0.95. The rephrasing maintains the original
tone, structure, and factual content. Additional examples are provided in Table 8 of Appendix B.
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Figure 2 Pareto fronts of watermarking methods showing the trade-off between quality and watermark strength
using Llama-3.2-3B-Instruct. Each point corresponds to a different parameter configuration, with values
representing medians across 100 rephrased passages. Experimental details are given in Sections 4.1 and 4.2.



4.3 Impact of Model Family and Size

We investigate whether larger models are better suited for post-hoc watermarking. Figure 3 shows the
trade-off curves by model family (SmolLM, Gemma, Llama, Qwen) and size. Regarding performance,
we observe that larger models preserve semantics better: across all families, increasing model size
(darker points) shifts the clusters upward. For example, within the Llama family, Llama-3.1-8B (dark
green) attains lower cross entropy than the 3B and 1B variants (lighter teal) at comparable watermark
strengths. However, larger models struggle to reach low p-values compared to smaller models: they
populate the left rather than the right of the plots. Gemma 3 models are essentially absent from the
high-detectability region, as their outputs naturally exhibit very low entropy, even for the smallest
sizes. Overall, when strong watermarking is required, only small models appear on the frontier, whereas
larger models dominate in the lower-strength regime. We see in subsection 4.6 that the issue with large
models persists even if the temperature is increased.

Note that these results are conditioned on the length filtering described in subsection 4.1; thus, the
presence of a data point implies enough successful valid generation for the corresponding combination of
model /scheme /parameters. For instance, smaller models with stronger watermarks fail to meet length
constraints more frequently. We refer the reader to Appendix C to assess the generation stability of
each configuration, which cannot be inferred directly from the figure.

4.4 Decoding Strategies: Beam Search vs. Sampling vs. WaterMax

We explore in Figure 4 whether beam search can find better watermarked sequences than random
sampling. We watermark with Llama-3.2-3B-Instruct, and decode with or without beam search, for each
suitable watermarking method: Green-red, Synth-ID, MorphMark, and DiPMark (since Gumbel-max is
deterministic, beam search cannot be applied with it).

We observe that beam search consistently improves the Pareto frontier, especially with biased scoring
(see section 3): it shifts the results upward, substantially improving rephrasing quality at a fixed
watermark strength. Notably, while Gumbel-max sampling appears to be the best option when used
with random sampling in Figure 2, other methods can be substantially improved through beam search.

WaterMax (Giboulot and Furon, 2024) results are shown in brown in Figure 2. Surprisingly, we found
that WaterMax achieved weak detectability across the hyperparameters we tested, making it difficult
to achieve strong watermarking detection in the post-hoc setup.

4.5 Entropy-Aware Detection

Instead of scoring every token, we now filter out low-entropy tokens at detection time, as motivated
in section 3 and detailed in subsection 4.1. In Figure 5, we fix the rephrasing model to Llama-3.2-3B
and, for each method and watermarking configuration, test whether there exists an entropy threshold

SmolLM-2 Gemma-3 Llama-3 Qwen-2.5 i Pareto Optimal
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Cross Entropy (Mistral-7B, )
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Figure 3 Impact of model family and size. Cross Entropy vs. watermark strength. Larger models improve quality
for a given watermark strength, but small models are necessary to reach high strengths. All families are
comparable, except Gemma-3 which is not suitable. Experimental details are given in Sections 4.1 and 4.3.



that improves detectability by more than 5% on at least 50 of the 100 texts of Charles Dickens.

The left plot reports, for each watermarking method, the proportion of configurations for which such a
threshold exists. We see that most methods have only 30-40 successful configurations. The middle
plot shows, for those successful configurations, the actual gain in detection performance, which never
exceeds 20%. The right panel presents the corresponding non-aggregated statistics.

We see that WaterMax is different: any entropy threshold degrades detectability. This is because
WaterMax optimizes the watermark score at the sentence level rather than the token level; filtering by
token entropy does not expose additional signal, it only reduces the number of scored tokens and thus
the available statistical evidence. One other and related property of WaterMax is that it cannot be
used for active dataset inference through radioactivity. This is explained in detail in Appendix C.

4.6 Post-hoc Code Watermarking

Experimentaldetails. We now conduct experiments on HumanEval and MBPP to evaluate the feasibility
of post-hoc watermarking on structured and verifiable text, where watermarking requires preserving
the syntax and the function of the code.

Data preparation and preprocessing. For each problem instance, we concatenate the provided prompt
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Figure 4 Beam search improves the Pareto frontier. Cross entropy vs. watermark strength for suitable methods.
Beam search, especially with biased scoring (see section 3), shifts the frontier upward, substantially improving
rephrasing quality at a fixed watermark strength. Experimental details are given in Sections 4.1 and 4.4.
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Table 2 Qualitative example of code watermarking on a sample from MBPP (using Llama-3.1-8B at temperature
1.4 with Gumbel-max watermarking, top-p = 0.95). The post-hoc rephrasing here refactors variable names to
ensure detection (low p-value) while maintaining correctness.

Original Text Watermarked Rephrasing
# A python function to identify non-prime numbers. # A python function to identify non-prime numbers
import math import math
def is_not_ prime(n):

result = False def is_not_ prime(number):

for i in range(2,int(math.sqrt(n)) + 1): verdict = False

ifn % i==0: for divisor in range(2, int(math.sqrt(number)) + 1):
result = True if number % divisor == 0:
return result verdict = True

return verdict

Pvalue: 0.12 e Tokens: 48 e Correct: v DPyalue: 3.29 X 1073 o Tokens: 57 e Correct: v/

(e.g., function signature and docstring) and the canonical solution. We make sure that the last top-level
function definition of the code is the target for execution by moving it if necessary. We show in App. B.1
an example of a HumanEval task. Overall, this dataset comprises 164 HumanEval and 974 MBPP
code samples, with average lengths of 180 and 80 tokens, respectively. The code samples range from
approximately 20 to 500 tokens in length.

Watermarking pipeline. The watermarking process is applied only to the code (we exclude unit tests
to preserve the evaluation). Since watermarking may inadvertently rename function identifiers, we
implement a post-processing step that parses the output and restores the original entry point name
required by the benchmark test harness. At test time, we concatenate the watermarked code with the
test harness to evaluate functional correctness.

Metrics for code watermarking. First, we measure functional correctness: the fraction of watermarked
code that passes the tests (pass@l). If pass@1 is low, one could regenerate with different random
seeds until obtaining functional code, but this assumes tests are available and it is cumbersome; ideally,
pass@1 should be high. Second, we measure the detection power: the true positive rate (TPR) at
a fixed false positive rate (FPR), and/or the distribution of log;, p-values. These can be computed
among all rephrased code, or more interestingly, among only the ones that passed the tests. In practice,
the latter is a better indicator of the watermark power, since codes that do not pass tests often exhibit
degenerative patterns (repeated code or text at the end) which artificially increase the TPR.

Comparing watermarking methods. We compare the watermarking methods using Llama-3.1-8B. Fig-
ure 6 shows the trade-off between functional correctness (pass@l) and detection power (TPR at
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Figure 6 Comparison of methods on code using Llama-3.1-8B. We report pass@1 (functional correctness) vs. TPR at
FPR=10"2 among correct codes, averaged over HumanEval and MBPP. Different markers and colors correspond
to different watermarking methods and their respective hyperparameters. Consistent with our findings in
literary English, Gumbel-max watermarking achieves the best trade-off between utility and detectability.
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Table 3 Post-hoc watermarking on code with Llama models using Gumbel-max (top-p=0.95). We report pass@1,
median log;, p-value (1), and TPR at FPR=10""° for different model sizes and temperatures (T). Metrics are
shown over all samples (“All”) and restricted to samples where the watermarked code passes functional tests
(“Passed”). Increasing model size increases pass@1 but decreases detection power, with smaller models achieving
better Pareto optimality.

T=1.0 T=12 T=14
Model pass@l  -log;, p-val TPRQ10~®  pass@l  -log;q p-val TPRQ10™®  pass@l  -log;, p-val TPR@10~3
All  Passed All Passed All Passed All Passed All  Passed All Passed
Llama-3.2-1B-Instruct 0.59 0.60 0.51 0.03 0.01 0.44 1.32 0.88 0.22 0.07 0.16 9.10 1.56 0.72 0.29
Llama-3.2-3B-Instruct 0.81 0.60 0.56 0.01 0.01 0.73 0.87 0.75 0.08  0.05 0.53 1.84 1.00 034 0.13

Llama-3.1-8B-Instruct 0.92 074 0.74 004 0.03 0.89 1.16 1.11 012  0.11 0.71 2.31 1.83 041 0.29
Llama-3.3-70B-Instruct 0.92 038 0.37  0.00 0.00 0.92 0.41 0.40  0.00  0.00 0.90 044 044 0.00 0.00

FPR=10"% among correct codes) for each method. Gumbel-max watermarking achieves the best Pareto
frontier, offering the most favorable trade-off between utility and detectability. SynthID performs well
in moderate temperature regimes but breaks down at higher temperatures, which limits its ability to
achieve high TPR values. MorphMark and DiPMark show competitive performance at intermediate
operating points, while Green-Red and SWEET exhibit steeper degradation in pass@1 as watermark
strength increases. Overall, no method achieves both high pass@l and high TPR simultaneously,
confirming the inherent difficulty of watermarking code while preserving functionality.

Comparing models. We compare model families and sizes using Gumbel-max watermarking (top-
p=0.95). Figure 7a shows that larger models lead to lower detection power (lower -log;, p-values), as
their outputs are less entropic and leave less room for watermarking. Table 3 confirms this: Llama-70B
achieves median -log;, p-values around 0.5-0.7, while smaller models reach values near 2 at T' = 1.4.
However, higher detection power in smaller models comes at the cost of functional correctness; for
example, at T = 1.4, Llama-8B achieves a TPR of 0.29 among correct codes but a pass@1 of only 0.71.

To further investigate this trade-off, we sweep the temperature in Figure 7b. Interestingly, the smaller
8B model achieves a better Pareto frontier than the larger 70B model, attaining higher detection power
at equivalent pass@1 levels. This suggests that while larger models produce higher-quality code, their
reduced entropy limits watermark effectiveness, making smaller models more suitable for post-hoc code
watermarking when balancing functionality and detectability.
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Figure 7 Evaluation of post-hoc watermarking across models using Gumbel-max (top-p=0.95). (a) Distribution of
-log,, p-value for watermarked codes that pass the functional correctness test (bars indicate mean and median).
Different colors represent model families, with darker shades indicating larger models. Corresponding values
for Llama models are detailed in Table 3. (b) Pass@1l and detection power (median -log;, p-value among
correct codes) for Llama 3B, 8B and 70B models across temperatures. Different model families and sizes behave
differently in terms of detection power at fixed temperatures, and interestingly, smaller models can achieve
better Pareto optimality than larger models.
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Table 4 Evaluation of post-hoc watermarking for different languages. We report the median logio p-value and
the SBERT score for semantic similarity, at varying temperatures of the generation. While not impossible,
watermarking languages other than English comes at a steeper cost on semantic quality.

Temperature en es fr ru
—log,,p SBERT —log,,p SBERT —log,,p SBERT —log;,p SBERT
0.80 1.832 0.960 1.608 0.949 0.810 0.946 1.355 0.908
1.00 3.813 0.954 4.408 0.940 2.809 0.937 4.976 0.888
1.20 8.147 0.946 20.098 0.921 19.705 0.911 23.689 0.836

4.7 Multi-Lingual Robustness on Wikipedia

To evaluate the generalization of post-hoc watermarking beyond English, we apply the method to
paragraphs of Wikipedia articles in multiple languages. In the following, we use Llama-3.1-8B-Instruct,
with Gumbel-max watermarking with varying temperature settings (0.8, 1.0, 1.2) and fixed top-p = 0.95.
Table 4 compares the performance across English (en), Spanish (es), French (fr), and Russian (ru). To
not conflate the effect of the number of tokens used for scoring with language, we only consider outputs
that contain between 400 and 600 tokens, and aggregate results over 1k samples.

The results indicate a performance gap: while non-English languages (Spanish, French, Russian) can be
watermarked, they suffer from a steeper trade-off. Achieving high detection strength in these languages
requires a larger sacrifice in semantic quality compared to English. This suggests that the logits of the
paraphrasing model are less easy to manipulate in languages for which the model was not primarily
trained, since most training data is in English. It may also reflect the fact that our semantic similarity
metric (SBERT) is more accurate for English than for other languages.

4.8 Impact of Chunking Strategy on Long Documents

To assess the impact of chunking as described in section 3, we compare full-context processing with
context-aware chunking (500-token chunks, with up to 1000 context tokens from previously rephrased
chunks) on documents of varying length (500-4000 tokens), using Dickens novel excerpts and Llama-
3.2-3B-Instruct.

For each document length, results are averaged over 5 independent texts. Table 5 shows that full-context
processing increasingly summarizes the content, while chunking better preserves length and yields
stronger detection at better semantic similarity. This indicates that context-aware chunking is crucial
for reliable watermarking of important document lengths.

5 Conclusion

We presented a comprehensive evaluation of post-hoc text watermarking via LLM rephrasing, a paradigm
that enables embedding traceable signals into existing text. Unlike generation-time constraints, the
post-hoc setting allows the allocation of additional compute to optimize the trade-off between text
quality and watermark detectability.

Our experiments yielded several findings. First, the simplest Gumbel-max scheme (Aaronson and
Kirchner, 2023) achieved better trade-offs than all other tested methods under random sampling. We
note that in the generation-time watermarking literature, Gumbel-max is criticized for its deterministic

. Length Ratio Detection (— log,, p) Similarity Table 5 Context-.aware chunking vs. full-
Size context. Comparison of full-context and
Full  Chunked  Full Chunked Full  Chunked context-aware chunked rephrasing (500-

500 0.91 0.91 19.3 19.3 0.94 0.94 token chunks with up to 1000 context
1500 1.15 0.97 49.5 148.8 0.85 0.91 tokens) on documents of varying length,
2500 0.78 0.98 56.8 195.5 0.91 0.91 averaged over 5 excerpts per length. Ex-
4000 0.70 0.86 24.9 198.3 0.84 0.91 perimental details are given in subsec-

tion 4.1 and subsection 4.8.
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nature: it fixes the randomness of generation, so identical prompts produce identical outputs, which
can be problematic in production. In our post-hoc setting, however, this limitation is less consequential.
We also observe that all other schemes benefit substantially from beam search. Second, to achieve high
watermark strength, smaller, more entropic models outperformed larger models run at high temperature.
Third, entropy filtering at detection time provided only marginal gains while introducing additional
complexity, making it a less practical option in typical deployment scenarios.

A limitation of our study, and of the field at large, is the reliance on automated metrics such as perplexity
and BERTScore to approximate text quality and semantic preservation. Much like in image and audio
watermarking, these proxies cannot fully capture the nuances of human perception, particularly across
different languages where robust human evaluations remain essential. To address this limitation, we
extended our analysis to post-hoc code watermarking, where execution-based correctness provides an
objective, ground-truth measure of utility. Our results reveal that while watermarking is feasible in this
domain, strict correctness constraints reduce the available capacity for watermark embedding compared
to natural language.
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Appendix

A Additional Details on LLM Watermarking

A.1 Hash Function

All watermarking schemes in this work rely on a pseudorandom function (PRF) to deterministically
map how watermark windows should influence the next-token selection (e.g., green/red classification or
Gumbel noise values). The PRF takes as input the candidate token z, a context window w = (wy, ..., wy)
of k token IDs, and the secret key s (all of them are integers), and outputs a random integer in [0, M).
We compute:

K
h/(CC,W>S)=<p2'5€+zwi'qz‘+173'8>'p4> (1)

i=1
h(z,w,s) = XORShift(h'(z,w,s)) mod M, (2)
where ¢, ..., qx are distinct large primes (to ensure that different orderings of the same tokens produce

different tokens), and po, p3, ps are additional primes. The first result A’ undergoes XOR-shift for better
bit dispersion: h = (R’ - Pmix) @ (A" - pmix) > 8), where pnix is a mixing prime and s is a shift constant.
Finally, h mod M yields an integer in [0, M).

For uniform PRF output in [0, 1), we divide by M. For binary (green/red) classification, we threshold
at : a token is “green” if h/M < ~. This construction ensures that small changes in any input (window,
token, or key) produce uncorrelated outputs, satisfying the pseudo-randomness requirements for
watermark security. In practice, the implementation allows for selectively scoring some tokens without
needing to generate the full green/red list, which can speed up computations for large vocabularies,
especially for SynthID-text, which uses multiple lists for different g-values.

A.2 Details on Watermark Schemes

We describe below the main watermarking schemes we evaluate.

Green-list/red-list. ~Kirchenbauer et al. (2023a,b) modify the logit vector during next-token generation
based on the watermark window of k previous tokens and the private key s. Note that the case where
k = 0 corresponds to the work of Zhao et al. (2023), but we found that it empirically breaks theoretical
assumptions and often leads to degenerate text; therefore, we use k > 1 in our experiments. For each
token v € V, the pseudorandom function PRF(-) outputs a value in [0,1) from the token ID v, the
context window, and s. A token is classified as “green” if PRF(v,w,s) < 7, where v € [0, 1] is the
expected proportion of green tokens under the null hypothesis (typically v = 0.5). Logits of green
tokens are incremented by § to increase their sampling probability:

14 v = .
£y otherwise

~ ly, + 96 if v € GreenList
{ (3)

Detection involves repeating the greenlist computation for each token of a text, incrementing a score by
1 if the token is in the greenlist, and performing a statistical test on the cumulative score. Under the
null hypothesis H( “the text is not watermarked with that scheme and private key s”, this score follows
a binomial distribution. A simple binomial test thus provides a p-value: the probability of observing at
least as many green tokens as observed, if the text was not watermarked.

SWEET. Lee et al. (2023) apply the Green-red list watermark only to high-entropy tokens. The intuition
is that low-entropy tokens (where the model is confident) contribute little signal but can degrade quality
if biased. At generation time, tokens with entropy below a threshold are sampled without watermark
bias. Specifically, a token is considered high-entropy if H(p) = —>_ .y, pvlogp, > 7, where 7 is a
predefined threshold. At detection time, these tokens are similarly excluded from scoring, improving
signal-to-noise ratio. Note that this filtering can also be applied only at detection time, and on top of
other schemes than green-red (as we do in our experiments).
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MorphMark. Wang et al. (2025) adaptively adjust watermark strength based on context. Let Pg =
Y veGreenList Pv De the total probability mass on green tokens before watermarking. If Pg < po (a
threshold, e.g., pg = 0.15), no watermark is applied to preserve quality. Otherwise, an adaptive boost
factor r = min(kPg, 1) is computed, where x controls the watermark strength. Probabilities are then
adjusted:

(4)

N {pv : (1 + 7”(1;756)) if v € GreenList
DPv =

Py (1—7) otherwise

This ensures stronger watermarking when the green list is already favorable, minimizing quality
degradation.

DiPMark. Wu et al. (2023) introduce a variant of Green-red watermarks that is distortion-free. The
method uses a pseudorandom permutation 7 (seeded by the context window and s) to reorder tokens.
After permutation, the cumulative probability distribution is modified as follows: tokens in the interval
[0,1 — ] have their probability set to zero, tokens in [1 — «, «] remain unchanged, and tokens in [« 1]
have their probability doubled (then renormalized). This creates a detectable bias while preserving the
original distribution’s average over the randomness of .

Gumbel-max. Aaronson and Kirchner (2023) alternatively leverage the “Gumbel-max trick”. After
applying temperature scaling and optional top-k or top-p filtering to obtain a probability vector p, the
next token is selected as:
— 1/po 5
Ty = argmaxr, (5)
where 7, ~ Uniform(0,1) is i.i.d. noise (which is equivalent to sampling from p). The watermark
intervenes by replacing the purely random r, with pseudorandom values r, = PRF(v,w,s) € [0,1)
generated by the PRF from the token ID v, the context window, and s, for each v € V. Consequently,
for a fixed context, the noise vector is deterministic. Detection is performed by recomputing the PRF
output r,, = PRF(z¢, wy, s) for each observed token z; and computing the cumulative score:

S =
t

N
—log(1 —7z,) (6)

=1

where NN is the number of tokens in the text. Under Hg “the text is not watermarked with that scheme

and private key s, S follows a T'(IV, 1) distribution. The p-value of a test associated with score S reads:

p-value(S) = T'(N, S)/T'(N), where T is the upper incomplete gamma function.

SynthID-text. Dathathri et al. (2024) propose SynthID Text, which employs a tournament-based
sampling strategy. The method uses m scoring functions g1, ..., gm, Where each g; maps a token to
a pseudorandom value in {0, 1} based on the context window and secret key'. Unlike the additive
bias of the “Green-red” list method, this approach samples 2" candidate tokens from the model’s
distribution and randomly organizes them into a tournament where winners are determined by the
g-values. Detection relies on a statistical hypothesis test using the mean g-value of the observed tokens
as the test statistic. Under the null hypothesis Hy (unwatermarked text), the g-values are independent
and identically distributed (e.g., uniform or Bernoulli). This scheme is shown to outperform Green-red
approaches because the tournament depth m allows for a more favorable trade-off between detectability
and text quality (perplexity), particularly in low-entropy settings where standard additive biases often
degrade coherence.

Scoring Functions: Mean vs. Weighted Mean. While the standard detection method computes a simple
unweighted mean of the g-values across all tokens and tournament layers (effectively a normalized
sum analogous to a binomial test), Dathathri et al. (2024) demonstrate that this is theoretically
suboptimal for multi-layer tournaments. The authors observe that the amount of “watermarking
evidence” embedded by the tournament is not uniform across layers; specifically, the strength of the
watermark diminishes as the tournament depth increases because each successive layer operates on a
subset of candidates with reduced entropy. Consequently, an unweighted mean dilutes the strong signal

In our implementation, each g-function corresponds to a distinct green/red list partition: we compute them by
incrementing the token ID by ¢ for each depth ¢ of the tournament. Since the hash function exhibits no correlation for
incremented token IDs, this effectively simulates independent green/red lists per tournament layer.
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Table 6 Key sensitivity analysis across models and watermarking schemes. We evaluate multiple random keys
per configuration on 100 non-watermarked texts. “SynthID (W)” denotes the Weighted variant which utilizes a
different scoring statistic. The Best Key is selected based on the highest p-value from the Kolmogorov-Smirnov
(KS) test for uniformity under Ho.

Aggregated Statistics (All Keys) Selected “Best” Key

Model Method Avg. p-val Okeys ‘ Key ID Avg. p-val KSp
DipMark 0.501 0.033 #596061 0.493 0.99

Green-red 0.501 0.033 7596061 0.493 0.99
MorphMark 0.501 0.033 #596061 0.493 0.99
Gumbel-max 0.497 0.031 #2345 0.499 0.99

Qwen2.5 SynthID (d = 10) 0.498 0.035 #606 0.494 0.95
: SynthID (d = 20) 0.488 0.033 #7753 0.506 0.99
SynthID (d = 30) 0.488 0.031 #1357 0.493 0.97

SynthID (W) (d = 10) 0.498 0.030 #323334 0.506 0.98

SynthID (W) (d = 20) 0.493 0.029 #3452 0.498 0.99

SynthID (W) (d = 30) 0.490 0.032 #505152 0.509 1.00

DipMark 0.508 0.037 #323334 0.505 0.95

Green-red 0.508 0.037 #323334 0.505 0.95
MorphMark 0.508 0.037 #323334 0.505 0.95
Gumbel-max 0.498 0.030 #6780 0.506 1.00

Llama 3 SynthID (d = 10) 0.507 0.035 #656667 0.504 0.99
SynthID (d = 20) 0.497 0.035 #626364 0.493 0.99

SynthID (d = 30) 0.503 0.037 #686970 0.499 0.99

SynthID (W) (d = 10) 0.504 0.036 7888 0.507 0.96

SynthID (W) (d = 20) 0.500 0.034 #42 0.504 1.00

SynthID (W) (d = 30) 0.502 0.036 #333 0.490 0.98

DipMark 0.501 0.035 #8907 0.488 0.96

Green-red 0.501 0.035 #8907 0.488 0.96
MorphMark 0.501 0.035 #8907 0.488 0.96
Gumbel-max 0.498 0.034 #6789 0.506 0.97

Gemma 3 SynthID (d = 10) 0.503 0.041 #656667 0.504 0.98
SynthID (d = 20) 0.496 0.036 #323334 0.488 0.99

SynthID (d = 30) 0.502 0.036 7131415 0.495 0.93

SynthID (W) (d = 10) 0.501 0.042 #1234 0.519 0.97

SynthID (W) (d = 20) 0.492 0.036 #258 0.501 0.99

SynthID (W) (d = 30) 0.503 0.039 #222324 0.498 0.98

DipMark 0.496 0.034 #7789 0.506 1.00

Green-red 0.496 0.034 #7789 0.506 1.00
MorphMark 0.496 0.034 7789 0.506 1.00
Gumbel-max 0.507 0.038 #252627 0.498 1.00

SmolLM2 SynthID (d = 10) 0.506 0.044 #535455 0.501 0.98
SynthID (d = 20) 0.495 0.041 #369 0.499 1.00

SynthID (d = 30) 0.497 0.043 #444 0.500 0.99

SynthID (W) (d = 10) 0.502 0.043 7707 0.509 0.98

SynthID (W) (d = 20) 0.499 0.041 #369 0.499 1.00

SynthID (W) (d = 30) 0.501 0.044 #252627 0.507 0.98

from early layers with the weaker signal from deeper layers. To address this, SynthID-text utilizes a
weighted mean score, which assigns decreasing weights w; to the g-values of the [-th tournament layer.
By emphasizing the earlier layers where the statistical signature is most robust, the weighted scoring
function improves the signal-to-noise ratio of the test statistic, yielding higher detection accuracy (true
positive rate) for a fixed false positive rate compared to the classical unweighted approach.

A.3 Choice of the Secret Key and Statistical Correctness

How to choose the secret key? As explained in section 3, valid detection requires p-values to be
uniformly distributed under Hy. While this holds in expectation over all possible keys, fixing a specific
key s creates preferences for certain (k + 1)-grams. If these patterns align with natural language
statistics, the expected green fraction under Hq shifts slightly (e.g., from 0.5 to 0.505), causing p-values
to collapse toward zero on long texts and inflating false positive rates.

We address this by testing 50 candidate keys for each combination of tokenizer, watermarking method,
and relevant hyperparameters. Each key is evaluated on 100 non-watermarked texts of 800 characters,
and we select the key that minimizes deviation from U(0,1) as measured by the Kolmogorov-Smirnov
(KS) statistic. This ensures our results reflect intrinsic scheme performance rather than key-specific
artifacts. Detailed statistics are provided in Table 6.
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A.4 Details on Radioactivity

The Radioactivity Test Protocol. To formally test for watermarked dataset radioactivity, we detail
the methodology from Sander et al. (2024, 2025) for the Green-list/Red-list scheme. The core idea is
to repurpose the standard watermark detection test (normally applied to observed text tokens) and
instead apply it to the predicted tokens of the suspect model. This allows us to determine whether the
model is familiar with the watermark, thereby providing evidence that the model was exposed to the
watermark during training.

Teacher Forcing Setup. We feed the watermarked text y into the suspect model fy using a teacher-
forcing setup. Let ¢; denote the top-1 prediction of the suspect model at step ¢, given the watermarked
prefix y<q:

J¢ = argmax Py(v | y<¢). (7)
veV

Test Statistic. We define the radioactivity score S as the empirical proportion of the suspect model’s
predictions that fall into the Green-list:

S = g Sl iorr-1.5) <), (3)

teu
where s is the secret key and v is the expected green ratio (typically 0.5).

Deduplication. To ensure statistical independence, we must account for repeated n-grams in the context
that could influence the model to reproduce them. In particular, if an n-gram in context is green, the
suspect model might repeat it due to context copying rather than watermark radioactivity. We filter
the indices ¢ to form a set U such that each watermark window y;_x.;—1 is only scored once, which
fully removes this issue (Sander et al., 2024). Under the null hypothesis Hq (i.e., the suspect model is
unaware of s), the count of green predictions should now follow a binomial distribution, as the suspect
model should exhibit no preference toward green or red tokens:

K ~ Binomial(|i], 7). 9)
This formulation allows for the computation of an exact p-value.

WaterMax Is Not Radioactive. For the score to truly follow a known binomial distribution under Hj
(“the suspect model has never been in contact with the watermark”), the watermark bias must be
applied at the token level. However, WaterMax selects the final sequence z* from a set of candidates C
by maximizing the number of green tokens globally by chance. Consequently, an innocent model fy
that shares a similar language distribution with the generator Py, will find that its optimal next token
7 is green significantly more often than ~y, purely due to this selection bias.

We verified this experimentally by running the radioactivity detection test on approximately 100k water-
marked tokens generated via WaterMax, Green-list/Red-list random sampling, and Green-list/Red-list
beam search with biased scoring (after rephrasing 300 excerpts from Dickens as detailed in subsec-
tion 4.1). As expected, the radioactivity test yields a p-value of 0.93 for Green-list/Red-list random
sampling and 0.76 for Green-list /Red-list beam search with biased scoring, but 1.0 x 10=¢ for WaterMaz.

B Additional Text Samples

B.1 Example of Code Tasks and Watermarked Codes
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Input (Prompt + Canonical Solution): Test:

from typing import List METADATA = { ’author’: ’jt’, ’dataset’: 'test’ }

def check(candidate):
assert candidate([1.0,
assert candidate([1.0,
assert candidate([1.0,
assert candidate([1.0,

def has_ close__elements(numbers: List[float], threshold:
float) -> bool:
""" Check if in given list of numbers, are any two
numbers closer to each other than given threshold.
>>> has_ close_elements([1.0, 2.0, 3.0], 0.5)

2.0, 3.9, 4.0, 5.0, 2], 0.3) == True
2, 3, 4.0, 5.0, 2.2], 0.05) == False
2.0, 5.9, 4.0, 5.0, 0.95]) == True
2.0, 5.9, 4.0, 5.0, 0.8]) == False

False assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2], 0.1) == True
>>> has_ close_elements([1.0, 2.0, 5.0, 2.0], 0.3)
True check(has_ close_elements)

for idx, elem in enumerate(numbers):
for idx2, elem?2 in enumerate(numbers):
if idx !'= idx2:
distance = abs(elem - elem?2)
if distance < threshold:
return True
return False

Figure 8 Example of a HumanEval task. The left block represents the text subjected to post-hoc watermarking
(paraphrasing). The right block is the test harness used to verify functional correctness (Pass@1).

Table 7 Post-hoc code watermarking examples on a sample from MBPP (using Llama-3.1-8B at temperatures
0.8, 1.2 and 1.4 with Gumbel-max watermarking, top-p = 0.95).

Original Code

Watermarked Code

# A function to find the minimum cost path to reach (m, n) from
0, 0) ...
R=3
c=3
def min_ cost(cost, m, n):
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tclil[0] = tc[i-1][0] + cost[i][0]
for j in range(1, n+1):
tc[0][j] = tclO][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tclilljl = min(tcli-1][j-1], tcli-11(j], tclillj-11) + costlillj]

return tc[ml](n]

# A function to calculate the minimum cost path from the origin
0, 0) ...

R=3

CcC=3

def min_ cost__path(cost, m, n):
# Create a temporary cost matrix tc of the same dimensions...
tc = [[0 for x in range(C)] for x in range(R)]
# The cost to reach the first cell (0, 0) is the cost...
tc[0][0] = cost[0][0]
# Calculate the cost to reach the first row.
for i in range(l, m+1):
# The cost to reach the first cell in the current row...
tclil[0] = tcli-11[0] + cost[i][0]
# Calculate the cost to reach the first column.
for j in range(1, n+1):
# The cost to reach the first cell in the current column...
tcl[0][j] = tc[Ol[j-1] + cost[0][j]
# Calculate the cost to reach the rest of the cells.
for i in range(1, m+1):
for j in range(1, n+1):
# The cost to reach the current cell is the minimum...
telilljl = min(tcli-11(j-1], tcli-11(], tclillj-11) + costlillj]
# Return the cost to reach the cell at position (m, n).
return tc[m][n]

Stats: 7: 0.8 @ pyalue: 2.11e — 01

Tokens: 414

e Code correctness: True
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Table 7 Post-hoc code watermarking at different temperatures (continued)

Original Code

Watermarked Code

# A function to find the minimum cost path to reach (m, n) from
0,0 ...
R=3
Cc=3
def min_ cost(cost, m, n):
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tcli][0] = tcli-1][0] + cost[i][0]
for j in range(l, n+1):
tc[0][j] = tc[O][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
tclilljl = min(tcli-11{3-11, tcli-11(j], tclillj-11) + costlillj]
return tc[m][n]

# Function to calculate the minimum cost path from the origin (0,
0 ...
R,C=23,3

def min_ cost__path(cost, m, n):
dp = [[0 for _ in range(C)] for _ in range(R)]
dpl0][0] = cost[0][0]

# Calculate the minimum cost to reach the first row.
for i in range(1, m+1):
dplil[0] = dpli-11[0] + cost[il[0]

# Calculate the minimum cost to reach the first column.
for j in range(1, n+1):
dpl0][j] = dpl0][j-1] + cost[0][j]

# Calculate the minimum cost to reach the rest of the positions.
for i in range(1, m+1):
for j in range(1, n+1):
dplil[jl = min(dpli-11[j-11, dpli-11(j1, dplil[j-11) + costlil[j]

return dp[ml][n]

Stats: 7: 1.2 e

Pvalue: 2.63e — 02

Tokens: 256

e Code correctness: True

# A function to find the minimum cost path to reach (m, n) from
0,0 ...
R=3
c=3
def min_ cost(cost, m, n):
tc = [[0 for x in range(C)] for x in range(R)]
tc[0][0] = cost[0][0]
for i in range(1, m+1):
tclil[0] = tc[i-1][0] + cost[il[0]
for j in range(1, n+1):
tc[0][j] = tc[0][j-1] + cost[0][j]
for i in range(1, m+1):
for j in range(1, n+1):
telilljl = min(tcli-11{j-11, tcli-11(], tclillj-11) + costlillj]
return tc[ml][n]

# Function to calculate the minimum cost path from the origin (0,
0) ...

RatingsColumns = 3

Rows = 3

def min_ expense(cost, m, n):
databaseOfDiscountedValues = [[0 for xPos in
range(RatingsColumns)] for yPos in range(Rows)]
initialPositionValuation = cost[0][0]
for tabIndex in range(1, Rows+1):
databaseOfDiscountedValues[tabIndex][0] =
databaseOfDiscounted Values[tabIndex-1][0] + cost[tabIndex][0]
for tabIndex in range(1l, RatingsColumns+1):
databaseOfDiscountedValues[0][tabIndex] =
databaseOfDiscounted Values[0][tabIndex-1] 4 cost[0][tabIndex]
for tabIndex in range(1l, Rows+1):
for collndex in range(1, RatingsColumns+1):
dbDV =
min(databaseOfDiscountedValues[tabIndex-1][collndex-1],
databaseOfDiscounted Values[tabIndex-1][collndex],
databaseOfDiscountedValues[tabIndex][collndex-1]) +
cost[tabIndex][collndex]
databaseOfDiscountedValues[tabIndex][collndex] = dbDV
return databaseOfDiscountedValues[m][n]

Stats: 7: 1.4 e

Pvalue: S.14e — 11 o

Tokens: 302

e Code correctness: False
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B.2 Descriptive Text and Dialogue Preservation

Table 8 Additional qualitative comparisons on literary text. Additional samples from A Christmas Carol by Charles
Dickens, rephrased using Llama-3.2-3B-Instruct with the Gumbel-max scheme, T' = 0.7 and top-p = 0.95. All
outputs maintain strong semantic similarity and watermark detectability.

Original Text Watermarked Rephrasing

Ezample 1

Lumber-room as usual. Old fire-guard, old shoes, two  Lumber-room as usual. Old fire-guard, worn shoes,
fish-baskets, washing-stand on three legs, and a poker. two fish-baskets, a washing-stand on three legs, and a
Quite satisfied, he closed his door, and locked himself poker. He was quite content, so he locked himself in,
in; double-locked himself in, which was not his double-locked himself in, which wasn’t his usual
custom. Thus secured against surprise, he took off his  practice. Thus secure against surprise, he shed his
cravat; put on his dressing-gown and slippers, and his cravat, put on his dressing-gown, slippers, and his

nightcap; and sat down before the fire to take his nightcap; and sat down before the fire to enjoy his
gruel. gruel.

It was a very low fire indeed; nothing on such a bitter It was a very low fire indeed; the flames seemed to be
night. He was obliged to sit close to it, and brood burning with a fierce intensity. He was forced to sit

over it, before he could extract the least sensation of  close to it, and reflect on it, before he could feel any
warmth from such a handful of fuel. The fireplace was warmth emanating from such a small amount of fuel.

an old one, built by some Dutch merchant long ago, The fireplace was an old one, built by a Dutch
and paved all round with quaint Dutch tiles, designed merchant many years ago, and adorned with intricate
to illustrate the Scriptures. There were Cains and tiles depicting biblical scenes. There were numerous

Abels, Pharaoh’s daughters; Queens of Sheba, Angelic  figures from the Bible, including Cain and Abel,
messengers descending through the air on clouds like  Pharaoh’s daughters, the Queen of Sheba, and the

feather-beds, Abrahams, Belshazzars, Apostles Angelic messengers descending from the heavens like
putting off to sea in butter-boats, hundreds of figures angels on cloud-like bodies; yet, his gaze fell upon the
to attract his thoughts; and yet that face of Marley, face of Marley, seven years deceased, and it seemed to
seven years dead, came like the ancient Prophet’s rod, hold a profound power, as if the very spirit of the
and swallowed up the whole. departed was still present.

Stats: SBERT: 0.925 e Ratio: 1.03 e Perplexity: 3.10 e p-val: 6.7 x 10~4

Ezxzample 2
“ again; and followed it up with “Humbug.” “Again; and it followed with an exclamation,
“Don’t be cross, uncle!” said the nephew. “Humbug!”
“What else can I be,” returned the uncle, “when I live “Don’t be cross, uncle!” said the nephew.
in such a world of fools as this? Merry Christmas! “What else can I be,” returned the uncle, “when I live
Out upon merry Christmas! What’s Christmas time in such a world of fools as this? Christmas is a time
to you but a time for paying bills without money; a when everyone is trying to deceive themselves,
time for finding yourself a year older, but not an hour pretending to be merry and happy, but in reality, it’s
richer; a time for balancing your books and having just a chore to pay bills and get older without earning
every item in ’em through a round dozen of months more. It’s a time when people make lists and check

presented dead against you? If I could work my will,” them twice, but never actually achieve anything. If I
said Scrooge indignantly, “every idiot who goes about could change my ways,” said Scrooge indignantly,
with 'Merry Christmas’ on his lips, should be boiled  “every fool who goes about spreading 'Merry

with his own pudding, and buried with a stake of Christmas’ on their lips should be shunned and left to
holly through his heart. He should!” rot. They should be boiled in their own misery, and
“Uncle!” pleaded the nephew. buried with a curse of isolation through the desolate
“Nephew!” returned the uncle sternly, “keep Christmas winter months.”

in your own way, and let me keep it in mine. “Uncle!” pleaded the nephew.

“Nephew!” returned the uncle sternly, “keep Christmas
in your own way, and let me keep it in mine.”

Stats: SBERT: 0.935 e Ratio: 1.04 e Perplexity: 3.28 e p-val: 2.7 x 10~°
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C Additional Results

C.1 Analysis of Output Length Distributions

In the main text, we apply a filtering criterion to retain only rephrasings where the output length
remains within a factor of 0.75 to 1.25 of the original input length. In this appendix, we analyze the
distribution of these length ratios to validate that this filtering does not introduce bias against specific
watermarking schemes.

Figure 9 presents the distribution of length ratios (defined as Loutput /Linput) across all evaluated models
and five distinct watermarking methods. The green shaded region indicates the acceptance window
used in our main experiments.

We observe two key trends:

1. Consistency across schemes: For any given base model (rows), the distribution of output lengths is
remarkably consistent across all watermarking methods (columns). Whether using simple rejection
sampling (WaterMax) or distribution perturbation (DiPMark, Gumbel-max), the variance in
output length remains stable.

2. Dependence on model capability: The ability to respect the length constraint is primarily a function
of the model size and instruction-following capability. Smaller models (e.g., SmolLM2-135M)
exhibit high variance and frequently generate outputs that are too short or too long, whereas
larger, more capable models (e.g., Llama-3.1-8B, Gemma-2-27B) produce tight distributions
centered near the ideal ratio of 1.0.

These findings confirm that outliers in length are attributable to the underlying model’s generation
stability rather than the watermarking process itself. Consequently, filtering these outliers allows for
a fairer assessment of semantic preservation and detection power on valid generations, rather than
penalizing watermarking schemes for the base model’s verbosity or brevity failures.

T DiPMark Gumbel-max MorphMark SynthID-Text | WaterMax
+ + —+ —+ —+
»a -+ >a >a —
2.5 Tensruet + ﬂ— 4— * 4—

20 25

10 15 15 10 15 10 15 10 15
Length Ratio (Obs / Exp) Length Ratio (Obs / Exp) Length Ratio (Obs / Exp) Length Ratio (Obs / Exp) Length Ratio (Obs / Exp)

Figure 9 Impact of Model Choice on Output Length Consistency. Violin plots showing the distribution of length ratios
(Length,, / Lengthorig) for varying models and watermarking schemes. The green shaded region represents the
inclusion criteria ([0.75,1.25]) used in the main experiments. The red dashed line indicates the ideal ratio of 1.0.
Note that length variance is driven primarily by the base model choice (rows) rather than the watermarking
scheme (columns), with larger models consistently adhering closer to the target length.
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