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Invisible watermarking is essential for tracing the provenance of digital content. However, training
state-of-the-art models remains notoriously difficult, with current approaches often struggling to
balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a
new state-of-the-art for image and video watermarking. We first identify three fundamental issues of
existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic
human perception and result in visible watermark artifacts; (ii) the optimization instability caused
by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced
robustness and imperceptibility of watermarks when scaling models to high-resolution images and
videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates
unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that
stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution
gap via high-resolution adaptation, employing JND-based attenuation and training-time inference
simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility
of Pixel Seal on different image types and across a wide range of transformations, and show clear
improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to
video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution
for reliable provenance in real-world image and video settings.
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1 Introduction

The rapid advancement of generative models such as DALL·E (Ramesh et al., 2022), Stable Diffusion (Rombach
et al., 2022), Sora (Brooks et al., 2024), Veo (Google, 2025), and MovieGen (Polyak et al., 2024) has enabled
the creation of high-fidelity synthetic content at scale. In response, invisible watermarking—the process of
imperceptibly embedding a message into digital content—has emerged as a critical infrastructure for ensuring
authenticity. This technique not only serves to distinguish synthetic media from real images, but also to
establish broader provenance, such as verifying original uploaders and identifying source tools (Castro, 2025).
With that, there is a pressing need for techniques that are both robust and imperceptible.

Multi-bit image watermarking, as established by the seminal work of Zhu et al. (2018), uses an embedder neural
network to embed a binary message into an image as an imperceptible perturbation and an extractor neural
network that retrieves the embedded binary message from the perturbed image. Typically, the embedder and
extractor models are trained end-to-end by minimizing a compound loss function with two opposing objectives:
message reconstruction loss to ensure the message can be recovered from a watermarked image, and perceptual
losses such as MSE and LPIPS, or adversarial discriminator loss that ensures the embedded watermark
remains imperceptible for humans. To achieve robustness of the embedded watermark against common user
manipulations, such as application of Instagram filters, cropping, etc., during training, the watermarked image
is augmented before the hidden message is retrieved using the extractor. By backpropagating through the
augmentations, the model allows for the hidden message to be recovered even after image edits.
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Figure 1 Imperceptibility and robustness of multi-bit image watermarkingmethods. The Pixel Seal family of models sets
new state-of-the-art results for multi-bit image watermarking, both in watermark imperceptibility and robustness. The
figure shows average values across 1000 test images generated by Meta AI. The robustness is measured for a combined
attack of brightness change (0.5), crop (50% area), and JPEG compression (quality 40). Imperceptibility of Video
Seal 0.0 is heavily skewed due to its small but very visible artifacts. Each Pixel Seal model is trained with a different
watermark boosting factor β (see Section 4.1 for more details).

Despite the conceptual simplicity of this framework, training a model that is simultaneously robust, fast,
and truly imperceptible remains notoriously difficult, as increasing the model’s robustness can lead to more
perceptible watermarks and increasing the model’s imperceptibility often leads to less robust watermarks.
We identify three fundamental bottlenecks in existing methods: First, standard training pipelines rely on a
complex mix of perceptual losses to achieve watermark imperceptibility. These losses are often pixel-wise
metrics, such as mean squared error (MSE), or deep perceptual metrics, such as LPIPS, but they remain
imperfect proxies for human perception. For example, mean squared error loss does not discriminate between
smooth and highly textured areas of an image, whereas humans are more likely to notice artifacts in the
smooth regions of an image than in the highly textured ones. Second, jointly optimizing for robustness
and imperceptibility creates a contradictory loss landscape—a global optimum for perceptual loss is a zero
watermark (no message can be recovered), whereas a global optimum for robustness yields a highly visible
watermark. Finding the optimal tradeoff between robustness and imperceptibility requires precise tuning of the
learning dynamics. Without it, training frequently collapses—either the model fails to hide the information, or
it hides it so well that the decoder cannot retrieve it. Third, applying existing models to high-resolution media
at inference time requires watermark upscaling. This is due to the models being trained on low-resolution
crops, and it results in distracting artifacts and inconsistencies that are easily visible to the human eye. In
this work, we systematically address these challenges to advance the state of the art in image watermarking.

Our main contributions are as follows:

• First, we introduce an adversarial-only training paradigm that removes standard perceptual losses such
as MSE or LPIPS. By relying solely on a discriminator, we avoid the failure modes and manual tuning
associated with traditional loss functions.

• Second, we propose a three-stage training schedule that decouples the competing objectives of robustness
and imperceptibility. By first achieving robust (but visible) watermarks and gradually enforcing
invisibility, we ensure stable convergence across random initializations.

• Third, we propose to simulate the inference pipeline during training and apply Just-Noticeable Difference
(JND) attenuation at the original input resolution. This eliminates the artifacts commonly found in
upscaled watermarks while improving the robustness of the watermarks.

• Finally, we introduce Pixel Seal, an image watermarking model that achieves state-of-the-art robustness
and imperceptibility (see Figure 1). We demonstrate that the model can be efficiently adapted to video
via temporal watermark pooling with no performance drop.
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2 Related work

Traditional methods. Early image watermarking methods operated either in the spatial domain (Van Schyndel
et al., 1994; Nikolaidis et al., 1998) or in frequency domains like DFT (Urvoy et al., 2014), DCT (Bors et al.,
1996; Piva et al., 1997), and DWT (Xia et al., 1998; Barni et al., 2001). In the video domain, watermarking
approaches leveraged the specificities of video codecs to decrease the codec’s impact on robustness. The
resulting methods were typically designed for a specific video codec, such as MPEG-2 (Biswas et al., 2005;
Noorkami et al., 2007) or H.264/AVC (Chen et al., 2006; Zhang et al., 2007; Mohaghegh et al., 2008).

Deep-learning based imagemethods have progressively replaced the traditional ones, as they make robustness
easier by incorporating transformations directly into the training process. HiDDeN (Zhu et al., 2018), a
seminal work in this direction, has inspired many extensions, through adversarial training (Luo et al., 2020),
attention mechanisms (Zhang et al., 2020), and robust optimization (Wen et al., 2019). CIN (Ma et al.,
2022) introduced invertible networks for the task of watermarking, while MBRS (Jia et al., 2021) focused on
improving robustness to compression through the use of both real and an approximation of JPEG compression.
More recent image watermarking works include resolution-independent embedding (Bui et al., 2023; Xu et al.,
2025), robustness to diffusion purification (Pan et al., 2024; Lu et al., 2025), joint copyright protection and
tamper localization (Zhang et al., 2024a), localized multi-message extraction (Sander et al., 2025), or very
long hidden message length (Petrov et al., 2025). In the industry, Google’s SynthID (Gowal et al., 2025)
is deployed to watermark AI-generated content, whereas Meta (Castro, 2025) utilizes watermarking for a
broader range of applications. Yet, details on these methods are scarce.

A parallel research direction focuses on watermarking AI-generated content during the generation process (Yu,
2020; Yu et al., 2021), with notable works including Stable Signature (Fernandez et al., 2023), Gaussian
Shading (Yang et al., 2024), Tree-Ring (Wen et al., 2023), or their follow-ups (Kim et al., 2023; Hong et al.,
2024; Ci et al., 2024) for diffusion models and WMAR (Jovanović et al., 2025) and BitMark (Kerner et al.,
2025) for autoregressive models. In contrast to these works, we focus on watermarking in the post-hoc scenario,
i.e., after the generation process.

Deep-learning based videomethods are less numerous. Early works, such as VStegNet (Mishra et al., 2019)
and RivaGan (Zhang et al., 2019), adapted HiDDeN to the video domain but faced efficiency challenges with
4D tensors. Recent works, like DVMark (Luo et al., 2023), VHNet (Shen et al., 2023), RC-VWN (Chen
et al., 2024), or StegaVideo (Hu et al., 2024), have focused on improving robustness and imperceptibility
through the use of video architectures, differentiable compression simulation, and embedding/extraction in
the frequency domain (Zhang et al., 2024c; Chang et al., 2024), or tamper localization in videos (Zhang et al.,
2024b). In contrast to these methods that rely on complex 3D architectures, ItoV (Ye et al., 2023) and Video
Seal (Fernandez et al., 2024) adapt image-based architectures for video watermarking. Similarly, we also
adapt Pixel Seal for video watermarking, but we propose inference time-only adaptation without the need
for finetuning.

3 Preliminaries

In this section, we first describe a common post-hoc image watermarking framework, which will serve as a
foundation for our Pixel Seal model described in the next section.

3.1 Neural-based imagewatermarking

A common approach for post-hoc multi-bit image watermarking is to train an embedder neural network that
adds a binary message of length nbits to an image and an extractor neural network that recovers it from the
watermarked image. We detail their inference next, and describe the joint training process in Section 3.2.

Embedding and extraction of the watermark. The watermark embedder takes an image x ∈ [0, 1]H×W×3 and a
binary message m ∈ {0, 1}nbits as input. The output of the embedder is the watermarked image xw or the
watermark w ∈ [−1, 1]H×W×3 which is then summed with the input image to produce xw:

xw = x+ α · w, w = Emb(x,m), (1)
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where α is a scaling factor that controls the strength of the watermark. The watermark extractor takes a
possibly altered version of the watermarked image xw and outputs a “soft” message m̃ ∈ [0, 1]nbits which is
thresholded to recover the binary message m̂ ∈ {0, 1}nbits .

Watermark detection with statistical guarantees. Multi-bit watermarking can be used for simple yes/no
watermark detection in an image by consistently embedding the same binary message m and then verifying
its presence in the image. A key advantage of this protocol is that it provides a statistical bound on false
positives, which can be computed as:

Pm′∼B(0.5)nbits

[
dH(m,m′) ≤ dH(m, m̂)

]
=

nbits∑
k≤dH(m,m̂)

(
nbits

k

)
1/2nbits (2)

where B(0.5)nbits denotes multivariate Bernoulli distribution and dH(·, ·) is Hamming distance between binary
messages. Equation (2) yields a theoretical error bound assuming, for any non-watermarked image, all binary
messages are predicted with equal probability. This theoretical bound illustrates the benefit of multi-bit
watermarking, which, unlike other approaches, does not require rigorous calibration on non-watermarked data
to establish a reliable false positive rate.

3.2 Training imagewatermarkingmodels

Commonly, during training, an image x is processed by the watermark embedder to produce the watermarked
image xw. This image is then augmented with various geometric, valuemetric, and compression transformations
to simulate editing by users. Lastly, the augmented image x̃w is processed by the extractor to retrieve the
original message hidden in the watermark. The models are trained end-to-end with a combination of various
losses, as detailed next.

Losses. The post-hoc image and video watermarking training commonly use a combination of perceptual,
adversarial, and message losses. The perceptual loss Lperc ensures the watermarked image xw produced by
the watermark embedder is close to the original input image x. The exact implementation of the loss varies
significantly in the literature, ranging from simple mean squared error (MSE) to more complex ones, such
as LPIPS (Zhang et al., 2018), focal frequency (Jiang et al., 2021), or Watson perceptual models (Czolbe
et al., 2020). To improve the imperceptibility of the embedded watermark, many works rely on the adversarial
loss Ladv often formulated as Ladv = −D(xw). It maximizes the likelihood that a watermarked image xw

is classified as non-watermarked by the discriminator network D. The discriminator itself is jointly trained
using a dual-hinge loss (Lim et al., 2017) to distinguish between original and watermarked images. Lastly,
to hide a binary message m in the watermarked image, the binary cross-entropy loss Lmsg is applied to the
extractor outputs m̃:

Lmsg(m, m̃) = − 1

nbits

nbits∑
k=1

mk log(m̃k) + (1−mk) log(1− m̃k). (3)

The loss is backpropagated through both the extractor and the embedder to guide them to correctly embed
and read the hidden message in the watermark. The final loss function used for the training is the weighted
combination of the three losses:

L = λpercLperc + λadvLadv + λmsgLmsg. (4)

Augmentations. To ensure the embedded message in the watermarked image can be read even if a user
modifies the image, during training, the watermarked images are randomly transformed before being passed
to the extractor. Common transformations include geometric changes (e.g., cropping, resizing, and rotation),
valuemetric adjustments (e.g., brightness and contrast), and compression (e.g., JPEG). Some transformations,
such as the JPEG compression, are not differentiable. In such a case, similarly to Zhang et al. (2021), this
work uses a straight-through estimator that approximates the gradient with the identity function:

x̃w = xw + nograd(T (xw)− xw), (5)

where T is the non-differentiable transformation. Other works approximate non-differentiable transformations
with a trained neural network (Luo et al., 2023; Shen et al., 2023).
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Figure 2 Our training setup. Pixel Seal is trained using only adversarial and message loss, which results in highly
imperceptible watermarks. The message loss is backpropagated through the simulated attack (image augmentation) to
ensure the embedded watermarks are robust to common user edits.

4 Invisible and robust imagewatermarking

Image watermarking presents several key challenges. First, the watermark must be invisible to humans; any
visible artifacts, especially in flat regions such as the sky, are highly distracting to the viewer. Second, the
watermark must be detectable even if the watermarked image is altered by various user edits, such as cropping
or Instagram filters. Training such a robust model is highly sensitive to exact hyperparameter values, and
multiple random initializations can yield significantly different outcomes. Lastly, watermarking must be fast
and imperceptible even for very high-resolution images. A common inference-time interpolation technique for
high-resolution watermarking introduces distracting artifacts that are easily detectable by the human eye.

To address these challenges, we introduce the following contributions. First, to produce invisible watermarks,
we introduce adversarial-only training without any perceptual losses (Section 4.1). Second, to make the model
robust and the training stable and repeatable, we introduce a three-stage training schedule in which we first
achieve visible but very robust watermarks that are made invisible later during training (Section 4.2). Third,
to allow for practical high-resolution watermarking, we propose training-time inference simulation to eliminate
upscaling artifacts and increase model’s robustness (Section 4.3). Lastly, we introduce temporal watermark
pooling—a technique for efficiently adapting image watermarking models to video (Section 4.4).

4.1 Adversarial-only loss function

Ensuring that a watermark remains invisible in the content is the primary challenge in post-hoc watermarking
research. For example, Bui et al. (2023) utilize four different losses specifically designed to make watermarks
invisible. However, many such loss functions have modes in which the loss value is small, but the watermark
is very visible to humans. Therefore, making the watermark invisible requires careful hyperparameter tuning
without any guarantees of success. And even with carefully tuned hyperparameters, watermarks often remain
visible in flat areas as waves (Bui et al., 2023) or blobs (Fernandez et al., 2024).

In the attempt to solve the imperceptibility issue, in contrast to previous work, as shown in Figure 2, we
remove all perceptual losses and train the watermarking model using only the cross-entropy message loss Lmsg
and an adversarial loss Ladv(x, xw):

1

2
∇θD

[
ReLU

(
1−D(x)

)
+ ReLU

(
1 +D(xw)

)]
− λadv∇θEmbD(xw) (6)

where x and xw are the original and watermarked images, D is a patch-based discriminator network, θD its
parameters, and θEmb are the parameters of the watermark embedder. The architecture of the discriminator
affects how effectively it can remove visible artifacts. The more effective the discriminator is in removing
visible artifacts, the less robust the final watermark is to various content modifications. In this work, we chose
the patch-based discriminator of Rombach et al. (2022) as it provided a good balance.
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Figure 3 Training and inference of Pixel Seal on high-resolution images. The input image is first resized to the model
resolution (256×256) and the raw watermark is computed using the Pixel Seal embedder. Then, this watermark
is resized to the original input resolution and pixel-wise multiplied by the Just-Noticeable Difference (JND) map to
obtain the final high-resolution watermark.

To control the imperceptibility of the watermark, we introduce the watermark boosting technique. The
watermark boosting artificially amplifies the artifacts that are present in a watermarked image, making them
easier for the discriminator to be detected and removed. In detail, the boosted watermarked image x̂w,
computed as x̂w = x+ β(xw − x), replaces the regular watermarked image xw in Equation (6). Setting β > 1
ensures greater imperceptibility of the watermark, while β < 1 allows for very robust watermarks.

While the adversarial loss ensures the watermarked image does not contain any noticeable unnatural artifacts,
the watermarked image can still significantly deviate from the original reference image. This is a lesser issue
for watermarking of AI-generated content, where users are not provided with the original reference image, but
it can be a major challenge for other provenance applications (Castro, 2025), such as professional photography
devices, where the watermark must be minimal (ideally comparable to camera noise), so as not to alter the
user’s intent. To restrict the allowed deviation the watermark w can introduce to the original content, we
reduce the watermark magnitude by a global scaling factor α and a local Just Noticeable Difference (Zhang
et al., 2008) attenuation map as done by Sander et al. (2025). The attenuation map is computed using a
non-learnable function JND : [0, 1]H×W×3 → [0, 1]H×W which assigns large values for pixels where changes
to pixel intensities will likely remain unnoticed by humans (e.g., edges) and small values otherwise. The
watermarked image xw is therefore computed as follows:

xw = x+ α · (w ⊙ JND(x)) , w = Emb(x,m). (7)

4.2 Three-stage training schedule

Training the watermark embedder and extractor can be very brittle and sensitive to hyperparameters, as global
optima of perceptual and adversarial losses correspond to an empty watermark xw = x (w = 0). Related
works stabilize the training process by reducing the weight of perceptual losses λperc at the beginning of the
training. Xu et al. (2025) even delay the application of augmentations τ to the later stages of training to
improve the convergence of the model. Rather than carefully tuning hyperparameters, we observe a three-stage
training can resolve the instabilities and allow the model to repeatably converge to a similar solution.

In detail, in the first stage, the model is trained only with the message reconstruction loss Lmsg and the
watermark scaling factor is set to a large value α = α0, as done by Sander et al. (2025). At this stage, the
predicted watermark is highly visible, yet it facilitates a stable learning process. We train the model until the
bit accuracy is saturated, after which we move to the next stage. In the second stage, we add the adversarial
loss Ladv and we gradually decrease the watermark scaling factor α from the initial value α0 to the final value
α1 using a cosine schedule. We use the following schedule:

α(t) = α1 + (α0 − α1) · cos
(π
2
φ
)
, φ = clip

(
t−Nstart

Nend −Nstart
, 0, 1

)
. (8)

The factor φ controls the interpolation schedule based on the current epoch t, the second stage start epoch
Nstart, and the second stage end epoch Nend. The second-stage training ensures that the resulting watermark
is imperceptible while still being robust against various attacks. In the final stage, we finetune the model with
the final watermark scaling factor value α = α1, potentially using different types of data, attacks, etc., to
tailor the watermarking model for any specific application needs.
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Figure 4 The embedder with temporal watermark pooling enabled. During inference, a temporal average pooling and
un-pooling layer is inserted into the embedder. This modification results in a significant speedup for video watermarking,
with no impact on imperceptibility or robustness.

4.3 High-resolution adaptation

Computing a watermark directly on a high-resolution image with millions of pixels is computationally
prohibitively expensive. Therefore, a common approach is to train a watermark embedder and extractor
using a fixed spatial resolution, e.g., 256×256, and use watermark interpolation technique (Bui et al., 2023;
Sander et al., 2025) for inference. The technique works by downsampling the original image x to the fixed
model resolution using bilinear interpolation and later upsampling the low-resolution watermark w back to
the original resolution as shown in Equation (9).

xw = x+ α · resize↑(w), w = Emb (resize↓(x),m) (9)

However, this approach has three major downsides. First, the watermark upsampling can often result in
artifacts being spilled into regions where they are more visible (e.g., areas around edges). Second, some
artifacts that are imperceptible in low resolution can be easily spotted in high resolution. And third, the
watermark extractor is trained to extract hidden messages from images x̃w = resize↓(x) + α · w, where both
x̃w and w are in the fixed model resolution, while during inference the extractor detects the hidden message in
image x̃′

w = resize↓(x+ α · resize↑(w)). Because in the general case x̃w and x̃′
w are not equal, the watermark

extractor is tasked with detecting watermarks in out-of-distribution data.

We address these challenges as follows: First, to address the spill of watermark artifacts into flat regions
where they are more visible, we compute the JND attenuation map in the original image resolution. Although
this increases the computational requirements during inference, the increase is substantially lower than the
computation of the watermark in higher resolution. Second, we address the perceptibility of certain artifacts
in higher resolution by computing the adversarial loss at the original image resolution. Although this increases
training compute requirements, it has no effect on inference. Third, to eliminate the distribution shift of the
watermark extractor input during inference, we simulate the same inference process during training. Again,
this has no effect on inference. In detail, the training pipeline is outlined in Equation (10), with the key
components illustrated in Figure 3.

m̃ = Ext(x̃w), x̃w = resize↓(τ(xw)), xw = x+α ·(resize↑(w)⊙ JND(x)) , w = Emb (resize↓(x),m) (10)

The original image x and the watermarked image xw are in the full resolution, while the watermark w and
the input to the watermark extractor x̃w, augmented by a random differentiable augmentation τ , are in the
fixed model resolution.

4.4 Videowatermarking through imagemodel adaptation

Video watermarking presents two additional challenges compared to image watermarking. The first challenge
is the complexity of video training itself—video decoding and pre-processing are resource-intensive, and the
high correlation within adjacent video frames results in insufficient diversity within a batch. The second
challenge is the computationally expensive process of watermarking each video frame during inference, which
renders any application of a video watermarking model impractical, even with the resizing trick introduced in
Section 4.3.

The simplest solution to the second challenge, i.e., increasing inference speed, is to watermark every k-th
frame. However, this introduces distracting flickering if the watermark is not fully imperceptible, makes the
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watermark vulnerable to video compression, and requires exhaustive scanning during extraction since most
frames are watermark-free. Therefore, Fernandez et al. (2024) propose to propagate the same watermark
computed for every k-th frame to the remaining k − 1 frames. While fast, this approach introduces ghosting
artifacts and requires video finetuning with the exact parameter k to make the method robust. Instead,
we introduce temporal watermark pooling—an inference-time method applicable to our image watermarking
model that alleviates the need to train on video while allowing for much faster inference without any loss in
visual quality or robustness compared to the baseline of watermarking every frame.

The temporal watermark pooling, shown in Figure 4, is based on the observation that adjacent video frames
are highly correlated. That is, the frames will likely have very similar high-level semantic features. Therefore,
we propose replacing these per-frame high-level semantic features with their average across neighboring frames.
In detail, during inference only, we insert a temporal average pooling layer with a kernel size and stride of
k into our embedder after the d-th downsampling U-Net block. Similarly, we insert a temporal un-pooling
(repeat) layer at the same position in the upsampling blocks of the U-Net. With d small, our temporal
watermark pooling achieves a significant speedup while having no impact on imperceptibility or robustness
due to the low-level per-frame changes computed using the last U-Net layers.

Original CIN InvisMark MBRS TrustMark-P

TrustMark-Q Video Seal 0.0 Video Seal 1.0 WAM Pixel Seal (ours)

Figure 5 Comparisonwith relatedwork on an AI-generated image. We show both the watermarked image (top) and the
predicted watermark brightened for clarity (bottom). Many related methods leave visible artifacts in areas with a
single color. In contrast, Pixel Seal does not leave visible artifacts in such areas while being more robust to various
transformations. More examples are available in the appendix.
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5 Experiments

In this section, we present the experimental setup and results of our image watermarking approach. We
describe the implementation details and evaluate our method against state-of-the-art image watermarking
models. Additionally, we conduct ablation studies to thoroughly verify our design choices.

5.1 Implementation and evaluation details

Implementation details. We train our model, called Pixel Seal, with a U-Net-based architecture (Saharia
et al., 2022) with 43.8M parameters for watermark embedding and ConvNext-v2 Tiny (Woo et al., 2023) with
33.4M parameters for watermark extraction. The model training is performed on images from the SA-1b
dataset (Kirillov et al., 2023) for 600k steps with a batch size of 256. We use AdamW optimizer with a learning
rate of 5×10−4, decayed via a cosine schedule, and a linear warm-up period of 20k steps. We apply our
high-resolution training recipe described in Section 4.3, but for practical reasons, we limit the maximum image
size to Smax×Smax. To further ensure robustness against different image aspect ratios, we randomly resize
the image into a width/height sampled from the interval [Smin, Smax]. We set Smin = 256 and Smax = 768.
During the fist stage training we set the watermark scaling factor to α0 = 1.0 and decrease it during the
second stage to the final value of α1 = 0.2. The released Pixel Seal model is trained with the discriminator
of Rombach et al. (2022) with the default watermark boosting factor β = 1. The objectives are weighted with
λmsg = 1.0 and λadv = 0.1. We do not use any perceptual loss. Our models encode nbits = 256 bits.

Baselines. We compare Pixel Seal with other publicly available multi-bit watermarking methods. We
consider CIN (Ma et al., 2022) with 30-bit message, InvisMark (Xu et al., 2025) with 94-bit message1,
MBRS (Jia et al., 2021) with 256-bit message, TrustMark (Bui et al., 2023) with 100-bit message, Video Seal
0.0 (Fernandez et al., 2024) with 96-bit message, Video Seal 1.0 with 256-bit message, and WAM (Sander
et al., 2025) with 32-bit message. For video watermarking, we also compare with RivaGAN (Zhang et al.,
2019) with 32 32-bit message. Similarly to Pixel Seal, the baselines also operate at a fixed resolution, i.e.,
we use Equation (9) when evaluating them on high-resolution content.

Evaluation details. We evaluate the methods using 1000 images of resolution 1280×1280 generated by Meta
AI using the prompts from Gowal et al. (2025) and 100 real high-resolution photos from the SA-1b valida-
tion set (Kirillov et al., 2023). For video evaluation, we further use a dataset of 121 videos2 generated by
Movie Gen (Polyak et al., 2024) and an SA-V validation set of 96 high-quality videos. The evaluation is
performed on the first 3 seconds of each video. We measure both watermark imperceptibility and robustness.
For imperceptibility, we use PSNR, SSIM, LPIPS (Zhang et al., 2018), CVVDP (Mantiuk et al., 2024), and
our just-noticeable difference (JND) metric. The JND metric is computed using a regressor trained on internal
user study data to measure the perceptual quality difference between the watermarked image and the reference.
A difference of 1 JND means that 75% of observers would find the difference noticeable3. For evaluating
watermark robustness, we apply various transformations (e.g., brightness change, cropping, compression) and
report both the bit accuracy and log10 p. The latter represents the logarithm of the probability of observing
the measured bit accuracy by chance (Equation (2)). This allows for a fair comparison between methods with
different payload sizes (we refer to Fernandez et al. (2024, App. A) for more information on log10 p). The
full list of evaluated transformations, along with visual examples, is available in the appendix.

5.2 Comparison with the state-of-the-art

In this section, we evaluate the robustness and imperceptibility of all image watermarking methods. Addi-
tionally, we also compare the robustness of Pixel Seal with other methods in video watermarking. For
evaluation on videos, Pixel Seal uses temporal watermark pooling with step size k = 4 and depth n = 2.

Robustness. For image watermarking, the results in Table 1 for both Meta AI-generated images and real SA-1b
photos show that all methods perform well against simple valuemetric attacks, such as a small brightness

1InvisMark encodes 100-bit message; however, due to its random message sampling process during training, 6 bits of the
message have their values fixed.

2The videos are available at www.youtube.com/playlist?list=PL86eLlsPNfyi27GSizYjinpYxp7gEl5K8.
3Please note that the JND metric described here differs from the JND heatmap used to attenuate the watermark on flat areas.
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change, and image compression algorithms, such as JPEG. However, for geometric attacks, such as cropping,
we see Pixel Seal clearly outperforming all other methods. The performance difference is further amplified in
combined attacks consisting of cropping, JPEG compression, and brightness change, where only Pixel Seal
and InvisMark maintain bit accuracy above 90% while Pixel Seal embeds a significantly larger message
than InvisMark (256 vs. 94 bits). In video watermarking, compression algorithms such as H.264 and HEVC
present a significantly greater challenge, resulting in lower bit recovery rates across all methods, especially in
the combined attack where JPEG image compression is replaced by H.264 video compression. Nonetheless,
Pixel Seal still outperforms all related methods.

Imperceptibility. We evaluate watermark imperceptibility both quantitatively and qualitatively. The quan-
titative evaluation of the images generated by Meta AI is presented in Table 2. We can see Video Seal 0.0
substantially outperforms all other methods in the PSNR and SSIM metrics. However, this is due to its very
localized artifacts, which yield, on average, a high metric value but are very visible. This can be seen in
Figure 5 and is further confirmed by other quality metrics that perform more complex aggregation than just
averaging. Overall, across all quality metrics, only Pixel Seal and TrustMark-P rank among the top three
methods for 4 out of 5 metrics. However, TrustMark-P is significantly less robust than Pixel Seal. Strong
imperceptibility of Pixel Seal watermarks is further confirmed by the qualitative results in Figure 5. Pixel
Seal produces watermarks that are localized to the edges of objects in the image and are of small magnitude.
In contrast, for example, WAM produces a very localized watermark, but its magnitude is much larger, or
InvisMark produces watermarks of a small magnitude but not well localized. Additional qualitative results
are available in the appendix.

Table 1 Robustness evaluation. We evaluate the robustness of all methods under various attacks on image (SA-1b and
Meta AI images) and video datasets (MovieGen and SA-V videos) using the original content resolution. In addition
to the bit accuracy, we report negative log10 p to account for the different number of bits encoded by each method.
Pixel Seal constantly outperforms all related methods, especially in the case of difficult geometric and combined
attacks. The image and video attacks differ; the full list of attacks is available in the appendix.

Identity Valuemetric Compression Geometric Combined

Bit acc. (↑)/− log10 p (↑) Bit acc. (↑)/− log10 p (↑) Bit acc. (↑)/− log10 p (↑) Bit acc. (↑)/− log10 p (↑) Bit acc. (↑)/− log10 p (↑)

M
et

a
A

I
(i
m

ag
es

)

CIN 1.00 9.0 0.85 7.5 1.00 9.0 0.52 0.7 0.50 0.4
InvisMark 1.00 28.3 0.89 22.0 0.98 26.1 0.77 14.8 0.94 22.1
MBRS 1.00 75.9 0.95 62.0 1.00 75.2 0.52 3.6 0.50 0.4
TrustMark-P 1.00 29.6 0.89 21.2 0.98 27.1 0.65 8.2 0.52 0.7
TrustMark-Q 1.00 30.0 0.97 27.1 1.00 29.8 0.67 9.4 0.54 0.9
Video Seal 0.0 0.97 25.0 0.84 16.7 0.93 20.9 0.80 13.3 0.74 7.4
Video Seal 1.0 0.98 69.4 0.95 60.7 0.95 60.6 0.83 42.9 0.69 16.0
WAM 1.00 9.6 0.89 7.5 1.00 9.5 0.77 4.7 0.62 1.6
Pixel Seal (ours) 1.00 75.8 0.97 68.1 0.98 68.9 0.95 63.9 0.91 50.3

SA
-1

b
(p

ho
to

s)

CIN 1.00 9.0 0.85 7.5 1.00 9.0 0.52 0.7 0.50 0.4
InvisMark 1.00 28.3 0.89 21.4 1.00 27.8 0.77 14.1 0.98 25.7
MBRS 0.99 71.8 0.93 55.9 0.99 71.1 0.52 3.4 0.50 0.4
TrustMark-P 0.99 28.8 0.84 17.3 0.98 26.7 0.64 7.7 0.52 0.6
TrustMark-Q 1.00 29.9 0.96 25.9 1.00 29.7 0.65 8.5 0.53 0.8
Video Seal 0.0 0.98 25.2 0.85 17.2 0.96 23.3 0.79 12.6 0.74 7.6
Video Seal 1.0 0.99 72.8 0.96 64.6 0.99 71.0 0.82 41.8 0.70 17.1
WAM 1.00 9.6 0.90 7.7 1.00 9.6 0.78 4.8 0.72 3.0
Pixel Seal (ours) 1.00 75.4 0.98 68.5 0.99 73.6 0.93 59.0 0.94 55.6

M
ov

ie
G

en RivaGAN 0.93 7.2 0.83 5.1 0.81 4.5 0.58 1.0 0.56 0.7
Video Seal 0.0 0.98 26.3 0.88 20.0 0.86 16.7 0.82 14.4 0.70 6.9
Video Seal 1.0 1.00 76.1 1.00 74.9 0.89 51.5 0.88 50.0 0.63 12.1
Pixel Seal (ours) 1.00 76.9 1.00 76.5 0.86 48.6 0.97 68.0 0.70 25.6

SA
-V

RivaGAN 0.97 8.2 0.87 6.1 0.82 4.7 0.60 1.3 0.56 0.7
Video Seal 0.0 0.99 27.3 0.89 21.1 0.81 14.6 0.83 15.7 0.64 4.5
Video Seal 1.0 1.00 76.6 1.00 76.0 0.87 49.4 0.87 50.4 0.59 8.0
Pixel Seal (ours) 1.00 77.1 1.00 76.8 0.86 48.1 0.98 70.8 0.68 24.2
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Table 2 Quantitative evaluation of the imperceptibility. We report the visual quality metrics on the 1000 images generated
by Meta AI. Only Pixel Seal and TrustMark-P rank among the top three methods for 4 out of 5 metrics. However,
TrustMark-P is significantly less robust than Pixel Seal.

PSNR (↑) SSIM (↑) CVVDP (↑) LPIPS (↓) JND (↓)
CIN 44.3 0.9894 9.51 0.0274 1.93
InvisMark 46.6 0.9823 9.93 0.0020 0.26
MBRS 46.3 0.9928 9.54 0.0049 1.59
TrustMark-P 49.0 0.9908 9.94 0.0018 0.19
TrustMark-Q 43.3 0.9886 9.73 0.0022 1.66
Video Seal 0.0 53.7 0.9989 9.85 0.0039 1.07
Video Seal 1.0 48.7 0.9958 9.84 0.0012 0.45
WAM 41.4 0.9760 9.72 0.0344 0.95
Pixel Seal (ours) 48.9 0.9905 9.87 0.0013 0.34

5.3 Ablations

We ablate all key components introduced in Section 4: adversarial-only loss function with watermark boosting,
three-stage training schedule, high-resolution training, and temporal watermark pooling. The main ablation
results are shown in Table 3 and are detailed next.

Adversarial-only loss function. Unlike related work, our Pixel Seal model is trained using only adversarial
loss (Equation (6)) and message loss (Equation (3)). To justify our choice of loss function, we also train
our model using a mean-squared error perceptual loss, a common approach in related work. In Table 3
(section (a)), we show the results for training runs with different perceptual loss weights λperc. Training with
a small λperc = 0.1 has only a small effect on the final results in terms of both watermark robustness and
imperceptibility. When the perceptual loss weight is increased to λperc = 1.0, we observe that the model is no
longer able to learn any watermark, yielding a random bit accuracy of 50%. We stop this experiment after
100 epochs of no change in bit accuracy and therefore do not report quality metrics.

To show the effectiveness of removing visible artifacts using the discriminator, we also train our model without
the adversarial loss (λadv = 0). From the visual quality metrics in Table 3 (section (a)), it is clear that the
discriminator guides Pixel Seal to produce much less visible visual artifacts. Similarly, the JND map limits
the locations of watermark artifacts in the image to areas of high pixel variance (edges), yielding a much less
visible watermark.

Watermark boosting. To control the imperceptibility of the watermark, we vary the watermark boosting
parameter β. With β > 1, the watermark is artificially amplified for the discriminator, making it easier to
detect and remove. In Table 3 (section (b)), we verify that selecting β = 2.5 significantly reduces visibility of
artifacts while slightly decreasing the model’s robustness. Setting β = 0.5 yields the opposite results, i.e.,
more visible artifacts with improved robustness.

Three-stage training schedule. To stabilize the training process, Pixel Seal is trained with a three-stage
schedule that allows the model to first learn how to produce robust watermarks. Only later is the model
guided to make these robust watermarks less visible. In Table 3 (section (c)), we show the results when the
model is trained with the final watermark scaling factor α = 0.2 from the beginning, as well as when the
model is trained with the adversarial loss from the beginning. In both cases, the model is unable to learn
any watermark, resulting in a random bit accuracy of 50%. We stop this experiment after 100 epochs of no
change in bit accuracy and therefore do not report quality metrics.

High-resolution training. During training, we compute the JND map, apply the discriminator, and perform all
attacks in high resolution instead of using the low 256×256 resolution of the watermarking models. As shown
in Table 3 (section (d)), the high-resolution training outperforms the baseline approach in robustness for all
types of attacks. Additional improvement is achieved in geometric and combined attacks due to the variable
image aspect ratio. We also observe a reduction in visible watermark artifacts due to the application of the
discriminator in high resolution.
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Table 3 Ablations of the key Pixel Seal improvements. The results show our key contributions (adversarial-only loss
function, three-stage training schedule, and high-resolution adaptation) significantly contribute to the state-of-the-art
performance of Pixel Seal. A large drop in the metrics is indicated in red. The results are reported on the SA-1b
validation set of 100 photos.

Identity Valuemetric Compression Geometric Combined PSNR (↑) JND (↓)
Bit acc. (↑) Bit acc. (↑) Bit acc. (↑) Bit acc. (↑) Bit acc. (↑)

(a
)

Pixel Seal 1.00 0.98 0.99 0.93 0.94 47.0 0.44
w/ perceptual loss (Lperc = L2

2, λperc = 0.1) 0.99 0.97 0.99 0.92 0.91 47.1 0.41
w/ perceptual loss (Lperc = L2

2, λperc = 1.0) 0.50 0.50 0.50 0.50 0.50 – –
w/o discriminator (λadv = 0) 1.00 0.99 1.00 0.95 0.97 44.9 0.96
w/o JND 1.00 0.98 1.00 0.93 0.97 43.1 1.34

(b
)

β = 0.5 1.00 0.98 1.00 0.95 0.96 46.2 0.56
Pixel Seal (β = 1) 1.00 0.98 0.99 0.93 0.94 47.0 0.44
β = 2.5 0.99 0.96 0.98 0.90 0.86 50.1 0.30

(c
)

Pixel Seal 1.00 0.98 0.99 0.93 0.94 47.0 0.44
w/o watermark scaling (α0 = α1 = 0.2) 0.50 0.50 0.50 0.50 0.50 – –
w/o discriminator delay 0.50 0.50 0.50 0.50 0.50 – –

(d
) Pixel Seal 1.00 0.98 0.99 0.93 0.94 47.0 0.44

fixed 256×256 resolution 0.97 0.94 0.96 0.81 0.68 46.8 0.45

Table 4 Ablation of the temporal watermark pooling parameters. Inserting the temporal average pooling layer after the
first U-Net block (d = 1) produces a speedup of 2.2x compared to baseline Pixel Seal. The results are reported on
the SA-V validation set of 96 videos.

Identity Valuemetric Compression Geometric Combined PSNR (↑) Speedup (↑)
Bit acc. (↑) Bit acc. (↑) Bit acc. (↑) Bit acc. (↑) Bit acc. (↑)

Pixel Seal (k = 1) 1.00 1.00 0.86 0.98 0.68 47.6 –
w/ temporal pooling (k = 4, d = 3) 1.00 1.00 0.85 0.98 0.69 47.7 1.0x
w/ temporal pooling (k = 4, d = 2) 1.00 1.00 0.85 0.98 0.69 47.6 1.7x
w/ temporal pooling (k = 4, d = 1) 1.00 1.00 0.84 0.98 0.66 47.7 2.2x

Temporal watermark pooling. For efficient watermarking of videos using Pixel Seal, we insert a temporal
average pooling layer into the embedder, reducing the size of the internal video feature representations. We
measure the robustness, imperceptibility, and relative speedup of pooling with a kernel size of k = 4 at various
depths d. In Table 4, we see that inserting the temporal average pooling layer after the first U-Net block
(d = 1) produces a speedup of 2.2× compared to baseline, while having minimal impact on performance.
The inference speed was measured on the Quadro GP100 GPU using 64 video frames and a vanilla PyTorch
implementation of the model.

6 Conclusion

In this work, we present Pixel Seal, a state-of-the-art image watermarking model both in terms of robustness
and imperceptibility. The imperceptibility of the generated watermarks is achieved through a novel adversarial-
only approach that utilizes watermark boosting without relying on perceptual losses. Further, due to
our three-stage training with high-resolution adaptation, the training process is stable even under heavy
augmentations, resulting in extremely robust watermarks. Finally, we introduce an inference-time technique
for adapting image watermarking models to video, achieving a substantial speedup without compromising the
model’s performance. We release Pixel Seal model weights to foster further research in this field.
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Original CIN InvisMark MBRS TrustMark-P

TrustMark-Q Video Seal 0.0 Video Seal 1.0 WAM Pixel Seal (ours)

Original CIN InvisMark MBRS TrustMark-P

TrustMark-Q Video Seal 0.0 Video Seal 1.0 WAM Pixel Seal (ours)

Figure 6 Comparisonwith relatedwork on photos from the SA-1b dataset. We show both the watermarked image (top) and
the predicted watermark brightened for clarity (bottom). Many related methods leave visible artifacts in areas with a
single color. In contrast, Pixel Seal does not leave visible artifacts in such areas while being more robust to various
transformations.
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Original CIN InvisMark MBRS TrustMark-P

TrustMark-Q Video Seal 0.0 Video Seal 1.0 WAM Pixel Seal (ours)

Figure 7 Comparisonwith relatedwork on an AI-generated image. We show both the watermarked image (top) and the
predicted watermark brightened for clarity (bottom). Many related methods leave visible artifacts in areas with a
single color. In contrast, Pixel Seal does not leave visible artifacts in such areas while being more robust to various
transformations.
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Figure 8 The full list of attacks used for the image evaluation (top) and video evaluation (bottom). For each attack, we
also report the bit accuracy of Pixel Seal on the Meta AI images (top) and SA-V videos (bottom). Selected attacks
are visualized in Figure 9.
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Identity Crop 0.33 Rotation 10 Rotation 90

Contrast 0.5 Contrast 1.5 Brightness 0.5 Brightness 1.5

Hue -0.1 Saturation 1.5 Resize 0.5 JPEG 40

H264 40 Horizontal flipping Gaussian blur 17 Perspective 0.5

Figure 9 Illustration of some of the selected transformations.
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