
FUNCTIONAL INVARIANTS TO WATERMARK LARGE TRANSFORMERS

Pierre Fernandez1,2‹, Guillaume Couairon1, Teddy Furon2:, Matthijs Douze1

1FAIR, Meta 2Centre Inria de l’Université de Rennes

ABSTRACT

The rapid growth of transformer-based models increases the con-
cerns about their integrity and ownership insurance. Watermarking
addresses this issue by embedding a unique identifier into the model,
while preserving its performance. However, most existing approaches
require to optimize the weights to imprint the watermark signal,
which is not suitable at scale due to the computational cost. This
paper explores watermarks with virtually no computational cost, ap-
plicable to a non-blind white-box setting (assuming access to both
the original and watermarked networks). They generate functionally
equivalent copies by leveraging the models’ invariance, via operations
like dimension permutations or scaling/unscaling. This enables to
watermark models without any change in their outputs and remains
stealthy. Experiments demonstrate the effectiveness of the approach
and its robustness against various model transformations (fine-tuning,
quantization, pruning), making it a practical solution to protect the
integrity of large models.

Index Terms— DNN watermarking, white-box, transformers

1. INTRODUCTION

Large-scale transformer models are a leap forward in the field
of machine learning, with large language models like GPT-4 [1],
LLaMA [2] and others [3, 4], or vision ones like ViT-22b [5] or DI-
NOv2 [6]. As these models grow in complexity and size, protecting
them is important due to investments in their development. Notably,
this is raised by the US “Ensuring Safe, Secure, and Trustworthy AI”
announcement, European AI Act and Chinese AI governance rules.

Watermarking deep neural networks [7, 8] presents a step to-
wards ensuring their security, integrity and ownership. Embedding a
unique identifier into the model enables tracing it to safeguard it from
unauthorized usage and distribution. However, watermarking large
transformer models poses new challenges. Current watermarking
methods involve optimizing the weights to infuse the watermark, ei-
ther during pre-training or by fine-tuning the weights with additional
losses. While these techniques have shown success for smaller mod-
els, they become computationally infeasible for large-scale models
and for the burgeoning number of potential users and applications.

To address these challenges, we introduce a new approach to
watermarking large transformers, when access to both the original and
watermarked model is granted, i.e. in a non-blind white-box setting.
Our method capitalizes on the inherent invariance of transformers.
For a given model, it generates equivalent copies that serve as carriers
for arbitrary signatures. By employing operations such as dimension
permutation and coupled matrix multiplications, we create model
replicas without changing the model’s outputs and without training.
We conduct experiments on state-of-the-art transformer architectures

‹Correpondance to pfz@meta.com
:Work supported by ANR / AID under Chaire SAIDA ANR-20-CHIA-0011.

Invariant copies

Watermark Insertion

Original
weights

Permutations

Scaling /
Unscaling

× Invertible
Matrix

Watermark Extraction

Weights
Compare

Identify

Fig. 1: Overview. We identify each model by applying invariance
operations to the original weights.

to evaluate the applicability of our approach and its robustness against
model processing (e.g. fine-tuning, pruning, quantization, etc.). We
also discuss the main drawbacks of this setting.

The paper is organized as follows: section 2 provides an overview
of related works on DNN watermarking and background on transform-
ers; section 3 details the transformer’s invariants and how to exploit
them for watermarking; section 4 presents experimental results on
large language models.

Problem statement. A provider Alice, distributes her model to
various users Bob (either individuals or organizations). She aims
to trace the model back to a specific user, in case of unauthorized
distribution or leaks. As a precautionary measure, Alice embeds a
unique signature in the model’s weights for each user. In a white-
box setting, Alice has access to the models’ weights and extracts the
signature from it to identify Bob. Besides, Bob may evade detection
intentionally (trying to remove the watermark) or unintentionally
(fine-tuning, quantization, etc.).

This setting is quite common. Indeed few entities (“Alices”) have
the necessary computation resources, data and expertise to generate
the base model. For example, the training of the 65-B LLaMA model
took around 1B GPU-hours. Therefore, there are few variants of such
large models in the world. Besides, when Bob gains access to the base
model, it is common that he transforms it and that it re-emerges in a
public forum or through another channel, so that Alice can analyze
it. This can be either because Bob re-distributed it or because Alice
sought the model through legal channels, as suggested by Fan et al.
[9]. For example, many variants of the LLaMA models have been
fine-tuned on instruction datasets and been made available online.

https://www.whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf
https://artificialintelligenceact.eu/
http://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm
mailto:pfz@meta.com

2. RELATED WORK & TECHNICAL BACKGROUND

2.1. Deep Neural Network (DNN) Watermarking

DNN watermarking robustly embeds a unique identifier into the
model without affecting its performance, in order to later verify the
model’s identity. Watermarking should satisfy three criteria, utility:
the new model should have the same performance as the original
one; security: it should be stealthy, hard to remove and to forge;
robustness: the watermark should be detected even after the model
has been modified. Modifications may be unintentional – models are
fine-tuned, pruned and quantized – or intentional – adversaries may
try to remove the watermark or embed their own [10, 11, 12]. For
instance, some adversarial transforms employ invariance operations
in neurons and ReLU layers to evade detection [13], in a similar
fashion as the techniques of this work.

We distinguish between white-box and black-box settings, de-
pending on whether the model weights are accessible at verification
time, or only through a remote API. In white-box, the pioneering
work [7] embeds watermarks into the DNN’s weights. A regulariza-
tion loss term during training constrains the weights to carry a specific
signal, while minimizing the impact on the model’s performance. The
watermark is then retrieved directly by analyzing the model’s weights.
The Deep·Signs·Marks [14, 15] extends this to target black-box set-
tings and propose building collusion-resistant watermarks, RIGA [16]
improves its covertness and robustness, and greedy residuals [17]
improves the selection of the weights to modify.

Another line of work, called trigger-set based methods, embeds
the watermark in the behavior of the model with regards to certain
inputs. A recurrent idea is to use “backdoors”, i.e. memorize certain
sequences of input-output pairs [8, 18]. Watermarking generative
models is also an active field of research, either by employing trig-
gers [19, 20], or by watermarking their outputs [21, 22].

The literature on watermarking large models is scarce, and none
of the current papers operate at our scale. The most recent works [23,
24] concentrate on ResNet-18/AlexNet («20M parameters). PLM-
mark [25] also needs training and evaluates at most on BERT-large
which is around 300M parameters. This is 100 times smaller than the
models we consider in our work (e.g. LLaMA-30B, LLaMA-70B).
Previous methods could be adapted in the context of LLMs, but all
of them would require training or at least fine-tuning. Their impact
on the quality of the text generation and the robustness of the wa-
termark is also not demonstrated. Thus, the feasibility of existing
watermarking methods to these models remains an open question.

2.2. Transformers

Transformer [26] neural networks have become the standard for many
applications in the last few years. They can be trained efficiently on
GPUs and scale well to large datasets and models, in both natural
language processing [27, 28] and computer vision [5, 6]. In the
following we describe the NLP architecture from [29].

The input string is first tokenized into a sequence of integers
px1, . . . , xnq P Vn. An embedding layer E P R|V|ˆd maps each
token xi to a continuous vector z0i “ Exi P Rd, where d is the
embedding dimension. The transformer is a stack of attention and
feed-forward layers, that we describe in the following.

Attention layers. The self-attention mechanism enables long-range
dependencies between sequence elements. A self-attention transforms
an input sequence z P Rnˆd into queries Q, keys K, and values V :

Q “ zWQ
P Rnˆdk ; K “ zWK

P Rnˆdk ; V “ zWV
P Rnˆdv . (1)

It then computes attention weights by taking a scaled dot product
between the queries and keys:

AttentionpQ,K, V q “ softmax

ˆ

QKJ

?
dk

˙

V. (2)

Where the Softmax operator is applied column-wise.
This attention operator is applied h times in parallel, yielding h

output heads. The results are concatenated and projected back to the
original dimension:

MultiHeadpQ,K, V q “ Concatphead1, ., headhqWO, (3)

where headi “ AttentionpQWQ
i ,KWK

i , V WV
i q. The projections

WQ
i ,WK

i P Rdˆdk , WV
i P Rdˆdv and WO

P Rhdvˆd are learned.

The feed-forward network. The output is fed to a feed-forward
network (FFN), e.g. two linear layers with a ReLU activation:

FFNphq “ ReLUphW1 ` b1qW2 ` b2, (4)

where W1 P Rdˆdff , b1 P Rdff , W2 P Rdffˆd and b2 P Rd are
learned parameters (SwiGLU [30] and other variants also frequently
replace ReLU).

A stack of residual connections. Instead of directly feeding z and
h to the attention and FFN layers, residual connections are applied
and the inputs are normalized using layer normalization [31] (or
variants like RMSnorm [32]): LayerNormpzq “

z´µ
σ

d g ` b,
where µ and σ are the mean and standard deviation of z along its
second dimension, and g P Rd and b P Rd are learned parameters.
This is repeated for each layer l P t1, ..., Lu of the transformer:

hl
“ Attl

´

Lnl
att

`

zl
˘

¯

` zl (5)

zl`1
“ Ffnl

´

Lnl
ffn

`

hl
˘

¯

` hl. (6)

The output is fed to a normalization layer Lnout and a linear layer
Wout P Rdˆ|V| to generate logits, and a softmax outputs the proba-
bility distribution of the next token.

Positional embeddings. For many tasks, it is useful to encode the
position of tokens in the input sequence. Positional embeddings are
what allows to encode this information. They were originally sinu-
soidal functions of the position [26] added to the input embeddings.
There are now several variants [27, 33, 34, 35], that may change
Eq. (2). For instance, rotary embeddings [33] multiply queries and
keys depending on their relative position in the sequence. If m is the
position of the query (Qm “ zmWQ) and n the position of the key,
then it rewrites the product of (2) as:

QmKJ
n “ zmWQRΘ,n´mpznW

K
q

J. (7)

RΘ,n is a block diagonal matrix with 2 ˆ 2 rotation matrix entries:

pRΘ,nqi “

ˆ

cosnθi ´ sinnθi
sinnθi cosnθi

˙

,

with rotation frequencies chosen as θi “ 10, 000´2i{d.

3. WATERMARKING THROUGH INVARIANCE

3.1. Invariants in the weights of transformers

We define an invariant as a series of operation applied on the model’s
weights θ Ñ θ1 such that for any input x, the output fθ1 pxq is the
same as before the application of the invariant.

Permutation invariance appears in (at least) four levels of the
transformer. We note Πd the set of permutations of t1, ..., du. For a
matrix M P Rdˆd and π P Πd, we denote by M:,π (resp. Mπ,:) the
matrix where columns (resp. rows) are permuted according to π.
Embedding dimension. The embedding matrix E can be permuted
along its second dimension without changing the output of the model,
as long as the permutation is propagated to other matrices in the
model. More formally, for π P Πd, if E1

“ E:,π , then matrices
tWQ,WK,WV,W1,Wout,Lnatt,Lnffn, b2u Ă θ need to be per-
muted along their first dimension by π and all matrices tWO,W2u

along their second one: pWQ
q

1
“ WQ

π,:, pWO
q

1
“ WO

:,π , etc.
FFN layer dimension. All neurons making up matrices W1 and
W2 of feed-forward networks can be permuted: for π P Πdff , if
W 1

1 “ pW1q:,π and W 1
2 “ pW2qπ,:, then fθ1 p¨q “ fθp¨q.

Attention heads. Heads are interchangeable in (3) provided that WO

is permuted in blocks of dv according to its first dimension.
Inside the head. Depending on the type of positional embeddings, the
previous permutations can be extended. For instance if they do not
impact (2) (this is not the case for rotary embeddings) then WQ and
WK can be permuted along their second dimension.

Scaling/Unscaling. Whenever layer norms or variants are directly
followed (or preceded) by linear layers, e.g. at every attention or
FFN block, we can rescale component-wise the parameters g, b of
LayerNormpzq by a vector α P Rd. Invariance is obtained by
dividing the rows of the following (or preceding) linear layers by the
same vector.

Invertible matrices in QK products. We hereby assume the po-
sitional embeddings do not impact (2). If P P Rdkˆdk is invertible,
then choosing pWQ

q
1

“ WQP and pWK
q

1
“ WK

pPJ
q

´1 is in-
variant in (2). This also applies to the case of rotary embeddings by
restricting P to be block diagonal of 2 ˆ 2 matrices that apply a 2D
rotations and scaling by a factor λ (thanks to the commutativity of
2D rotations).

Combining invariants. All previous parameter transformations
may be seen as invertible right or left matrix multiplications applied
to the model parameters. They do not interfere and may be combined
in a sequence of arbitrary order, yielding θ Ñ θ1

Ñ θ2
Ñ ¨ ¨ ¨ .

Combining transformations at all levels improves robustness to
intentional removal attacks and to collusion (i.e. when several Bobs
share their weights to evade detection). Indeed, if Bob tries to remove
the watermark by re-applying one invariant, it will still be present in
the other invariants. In the same way, if several Bobs compare their
models, it will be hard for them to identify which operations were
applied to their models, since the order in which they were applied is
unknown, and since the weights will differ a lot between them.

3.2. From invariants to watermarks

Insertion. Before starting the watermark process, for each invariant
and each level of the network, we restrict the set of transformations
to 2k. For example, we randomly sample 2k possible permutations in
Πd for the Embedding dimension (out of the total d!).

Therefore, we can encode k bits for each combination of an
invariant and a level. We encode a model’s identifier as the concatena-
tion of m chunks of k bits (2mk possibilities). For instance, let k “ 4
and the model have 32 layers. We choose to embed two permutations
per layer, one for the attention block and one for the FFN block. The
total number of bits is 2 ˆ 32 ˆ 4 “ 256, representing 1077 possible
models (approximately the number of atoms in the universe, an upper
bound of the number of Bobs).

Extraction. To extract the k-bits message from a weight matrix,
we re-apply all 2k possible invariants to the original matrix. We then
compute the Frobenius norm of the difference (MSE) between the
observed weight and the possible watermarked ones. We choose the
one with lowest MSE among the 2k and this choice is encoded as a
k-bit integer. Doing that on every blocks of the network and every
invariant, we end up with a full message made of m chunks of k bits.
In the case of intertwined invariants, we do the same in the order in
which we inserted the invariants, reverting them as we go.

To speed up extraction, we may select a subset of the matrices’
rows before extraction. This speeds up the extraction (in the order of
100ˆ), but makes the detection slightly less robust. For instance, in
the case of scaling/unscaling we may select the first 100 components
of α fromRd toR100 and W fromRdˆd1

toR100ˆ100.

Matching. To match an extracted message (made of m chunks of
k bits) with a model’s identifier, we compute the number s of chunk-
wise errors with respect to all possible identifiers. We return a match
if s is bellow a fixed threshold τ to ensure resilience to corruption
and to provide a confidence score. A theoretical p-value, i.e. the
probability of obtaining a number of errors lower than s for a random
model, is given by the regularized incomplete beta function I:

p-valuepsq “ 1 ´
`

1 ´ I1{2k pm ´ s, s ` 1q
˘N

, (8)

where N is the number of distributed models.

Robustness and security. Watermarking models through invari-
ance is stealthy, because it does not change their outputs. However,
a distortion-free watermark is also a weakness: Alice can hide the
watermark without impacting the model’s utility, but on the other
hand an adversarial Bob may do the same at no cost. In short, most
of these watermarks are very robust against classical model manip-
ulations (fine-tuning, quantization, etc.) but not against a malicious
user who knows the method. In this case we would only know that
the model is an unauthorized copy, without knowing the leaker.

✔ID3

ID1
ID2

MSE

…

Original
weights

2

40

1

Extraction
π(ℓ): index bℓ of [π1

(ℓ).. π32
(ℓ)]

1

Bob’s
Weights Weights

40

2

ℓ ℓ

Apply π(ℓ)

…

2

40

1

ℓ
ℓ

ℓ

ℓ

…

…

MSE ≈ 0
→ bℓ=2

ID: b1…b40

π1
(ℓ)

π2
(ℓ)

π32
(ℓ)

ID: b1…b40

Insertion

Match

Fig. 2: Detailed illustration of watermark insertion and extraction, with the example of permutation on L=40 blocks. A user ID is a list b1...bL
of L bytes, that are used to select the permutation to apply for each block ℓ. For each ℓ, the extraction computes the MSE between the observed
weights and all original permuted weights. It then selects the one with minimum MSE, which in turn gives bℓ.

Table 1: Distortion induced on generation and robustness of wa-
termark extraction under various processes. Each line stands for a
different invariant. We present results of the sped-up extraction, the
ones for no speed-up are given as (acc).

Method Distortion
Byte accuracy (%) on:

Noise 1.0 Quant. 3b Prun. 50% Fine-tune

Perm. 0.20% 51.4 (99.6) 72.0 (100.0) 100.0 100.0
QK 0.18% 100.0 100.0 100.0 100.0
Scaling 0.24% 100.0 98.1 (100.0) 100.0 100.0
All 1.77% 60.8 (99.8) 70.0 (99.4) 100.0 100.0

4. EXPERIMENTS

The purpose of the experiments is to evaluate the effectiveness and
the robustness of the watermarks to transformations on transformers,
in the context of large language models.

4.1. Setup

Model. We use LLaMA [2] models as main benchmark. The ar-
chitectural differences with regards to the original transformer ar-
chitecture are pre-normalization [29] with RMSnorm [32], SwiGLU
activation [30] and rotary embeddings [33]. To evaluate that the util-
ity of the model is not degraded, we show results on a next-token
prediction task. This is done on random sequences of text taken from
Wikipedia, then tokenized using the default tokenizer of LLaMA.
Unless stated otherwise, we use the 7B-parameter model.

Attacks. We consider the following attacks. Fine-tuning. We fine-
tune the model in a supervised manner with the same settings as [36],
on 3 epochs with learning-rate of 2 ˆ 10´5. Noise. We add zero-
mean Gaussian noise with standard deviation σ to the model weights.
Quantization. We quantize the model weights into b bits. To allow
flexible rates and ease the experiments, this is done by uniformly
quantizing the weights between their minimum and maximum values.
Pruning. We prune the model weights by zeroing the ones with
smallest L1 norms, with sparsity given in percentage of zero weights.

Watermark settings. We apply the encoding process of Sect. 3.2.
For permutation invariance, we permute attention heads and FFN
layers. For scaling, we alter the layers’ RMSnorms and following
matrices. The scaling vector α is such that log10pαq „ Up´1, 1q.
For QK products, as mentioned in Sect. 3.1, the invertible matrix has
to be block diagonal of 2 by 2 rotation matrices, so we randomly
sample d{2 rotation angles. We fix the number of possible choices at
k=8, i.e. each choice is encoded with a byte. Therefore, we encode
2 bytes at every layer, except in QK products where we encode 1.
When combining all invariants together, we proceed the same way for
all blocks: we start with permutation, then apply invertible matrices
in QK products, then scale/unscale the layer norms and matrices.

For instance, the 7B model has L=32 layers so the watermark is
64 bytes long except for the QK products invariant where it is 32. In
the case of combined invariants, the total number of bytes is 160.

4.2. Results.

Robustness. We evaluate the robustness of the watermark using
the byte accuracy, i.e. the percentage of bytes correctly recovered.
Results are averaged over N=100 watermarked models except for
fine-tuning where we only fine-tune one model. We speed-up the
extraction by selecting a subset of 100 rows of the matrices (see

Table 2: Computational cost of watermark insertion and extraction
for different model sizes and the different invariants.

Model L d
Insertion (s) Extraction (s)

Perm. Scaling QK Perm. Scaling QK

7b 32 4096 3.5 2.7 7.4 9.2 31.7 6.0
13b 40 5120 7.0 4.9 15.8 14.1 30.3 7.7
30b 60 6656 19.3 8.7 47.3 31.7 54.7 13.5
70b 80 8192 37.1 17.5 106.0 56.3 110.0 21.5

Sect. 3.2); time needed for extraction is around 20 minutes when
using the full matrix instead.

Table 1 reports the byte accuracy for different processing applied
before extraction. We observe that the watermark is robust to all
attacks with byte accuracy >50%. Errors mainly come from the
speed-up of the extraction process. We also consider the p-value of
the associated statistical test (8). A byte accuracy of 50% on 64-bytes
messages is more than enough to reliably identify a model: the p-
values are always bellow 10´60, due to the very low probability of
simultaneously observing a match between tens of pairs of random
bytes. As an illustration, 8 matching bytes on 64-bytes messages
already gives a p-value of 10´8.

Model’s utility. In fact, previous invariants are not perfect because
of quantization (weights are stored as 16bits floating point numbers).
Thus, we quantitatively compare watermarked and original models.
We feed to both of them 1k sequences of 256 tokens. Predicted next
tokens are greedily chosen as the argmax of the 256k observed logits.

Table 1 reports the distortion as the proportion of predicted tokens
that differ between watermarked and original models. As expected
this proportion is very low (<1.8%) and higher for the scaling in-
variant since it further affects quantization. Besides, the distortion
increases when the token is far in the sequence e.g. for sequences
of length 1024 tokens, the average distortion at the last token rises
to 2.5% for the scaling invariant. This is still very low and does not
affect the utility of the model since predicted tokens are still likely.

Computational efficiency. Larger models have more layers and
parameters, which increases the computational cost of insertion and
extraction. In Table 2, we report results for different model sizes. In-
sertion and extraction times are averaged over 100 runs and measured
on 2 Intel(R) Xeon(R) 6230 @ 2.10GHz cores and a total of 480GB
of RAM. The low computational costs and requirements (no GPU
needed) makes it possible to scale to very large models.

5. CONCLUSION

Our work presents a lightweight approach for watermarking large
transformers. We leverage invariance properties to generate equiv-
alent copies for watermark embedding. It ensures that the model’s
outputs are preserved while providing close-to-perfect robustness
against processes like fine-tuning or quantization.

Yet, this approach has limitations. Namely, it is limited to white-
box scenarios. Additionally, if a sophisticated attacker identifies all
invariants, they may remove the watermark by applying the same
transformation techniques. In this case, it would still be possible to
identify that the model is an unauthorized copy but without the cor-
responding binary signature. Overall, this work is a starting point to
exploit invariance properties that stem from the extreme redundancy
of parameters of large networks, for watermarking applications.

6. REFERENCES

[1] OpenAI, “Gpt-4 technical report,” arXiv, 2023.

[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., “Llama:
Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[3] M. AI, “Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[4] S. Pichai, “An important next step on our AI journey,” Google AI Blog,
2023.

[5] M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer,
A. P. Steiner, M. Caron, R. Geirhos, I. Alabdulmohsin, et al., “Scal-
ing vision transformers to 22 billion parameters,” in International
Conference on Machine Learning, pp. 7480–7512, PMLR, 2023.

[6] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, et al., “Dinov2:
Learning robust visual features without supervision,” arXiv preprint
arXiv:2304.07193, 2023.

[7] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proceedings of the 2017 ACM on
international conference on multimedia retrieval, pp. 269–277, 2017.

[8] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning your
weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), pp. 1615–1631, 2018.

[9] L. Fan, K. W. Ng, C. S. Chan, and Q. Yang, “Deepip: Deep neural
network intellectual property protection with passports,” IEEE Trans-
actions on Pattern Analysis & Machine Intelligence, no. 01, pp. 1–1,
2021.

[10] L. Fan, K. W. Ng, and C. S. Chan, “Rethinking deep neural network
ownership verification: Embedding passports to defeat ambiguity
attacks,” Advances in neural information processing systems, vol. 32,
2019.

[11] J. Zhang, D. Chen, J. Liao, W. Zhang, G. Hua, and N. Yu, “Passport-
aware normalization for deep model protection,” Advances in Neural
Information Processing Systems, vol. 33, pp. 22619–22628, 2020.

[12] K. Kallas and T. Furon, “Rose: A robust and secure dnn watermarking,”
in 2022 IEEE International Workshop on Information Forensics and
Security (WIFS), pp. 1–6, IEEE, 2022.

[13] Y. Yan, X. Pan, M. Zhang, and M. Yang, “Rethinking white-box water-
marks on deep learning models under neural structural obfuscation,”
in 32th USENIX security symposium (USENIX Security 23), 2023.

[14] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: An
end-to-end watermarking framework for ownership protection of deep
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 485–497, 2019.

[15] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “Deep-
marks: A secure fingerprinting framework for digital rights man-
agement of deep learning models,” in Proceedings of the 2019 on
International Conference on Multimedia Retrieval, pp. 105–113, 2019.

[16] T. Wang and F. Kerschbaum, “Riga: Covert and robust white-box
watermarking of deep neural networks,” in Proceedings of the Web
Conference 2021, pp. 993–1004, 2021.

[17] H. Liu, Z. Weng, and Y. Zhu, “Watermarking deep neural networks
with greedy residuals.,” in ICML, pp. 6978–6988, 2021.

[18] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks
with watermarking,” in Proceedings of the 2018 on Asia conference on
computer and communications security, pp. 159–172, 2018.

[19] J. H. Lim, C. S. Chan, K. W. Ng, L. Fan, and Q. Yang, “Protect, show,
attend and tell: Empowering image captioning models with ownership
protection,” Pattern Recognition, vol. 122, p. 108285, 2022.

[20] D. S. Ong, C. S. Chan, K. W. Ng, L. Fan, and Q. Yang, “Protecting
intellectual property of generative adversarial networks from ambiguity
attacks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3630–3639, 2021.

[21] P. Fernandez, G. Couairon, H. Jégou, M. Douze, and T. Furon, “The sta-
ble signature: Rooting watermarks in latent diffusion models,” ICCV,
2023.

[22] C. Kim, K. Min, M. Patel, S. Cheng, and Y. Yang, “Wouaf: Weight
modulation for user attribution and fingerprinting in text-to-image
diffusion models,” arXiv preprint arXiv:2306.04744, 2023.

[23] H. Liu, Z. Weng, Y. Zhu, and Y. Mu, “Trapdoor normalization with
irreversible ownership verification,” in International Conference on
Machine Learning, pp. 22177–22187, PMLR, 2023.

[24] Z. Jiang, M. Fang, and N. Z. Gong, “Ipcert: Provably robust intellec-
tual property protection for machine learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3612–
3621, 2023.

[25] P. Li, P. Cheng, F. Li, W. Du, H. Zhao, and G. Liu, “Plmmark: a
secure and robust black-box watermarking framework for pre-trained
language models,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, pp. 14991–14999, 2023.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[27] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learn-
ing with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[28] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws
for neural language models,” arXiv preprint arXiv:2001.08361, 2020.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[30] N. Shazeer, “Glu variants improve transformer,” arXiv preprint
arXiv:2002.05202, 2020.

[31] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[32] B. Zhang and R. Sennrich, “Root mean square layer normalization,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[33] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, “Roformer:
Enhanced transformer with rotary position embedding,” arXiv preprint
arXiv:2104.09864, 2021.

[34] O. Press, N. Smith, and M. Lewis, “Train short, test long: Attention
with linear biases enables input length extrapolation,” in International
Conference on Learning Representations, 2021.

[35] A. Kazemnejad, I. Padhi, K. N. Ramamurthy, P. Das, and S. Reddy,
“The impact of positional encoding on length generalization in trans-
formers,” arXiv preprint arXiv:2305.19466, 2023.

[36] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto, “Stanford Alpaca: An instruction-following
LLaMA model,” 2023.

	 Introduction
	 Related Work & Technical Background
	 Deep Neural Network (DNN) Watermarking
	 Transformers

	 Watermarking through Invariance
	 Invariants in the weights of transformers
	 From invariants to watermarks

	 Experiments
	 Setup
	 Results.

	 Conclusion
	 References

